The Political Economy of Incentive Regulation: Theory and Evidence from U.S. States.

Carmine Guerriero
Website: http://www.econ.cam.ac.uk/phd/cg372

Faculty of Economics, University of Cambridge

To Enforce and Comply
University of Amsterdam Faculty of Law, Amsterdam
March 6th, 2009.
The New Theory of Regulation.

A long theoretical tradition (Laffont and Tirole, 1993; Laffont, 1996 and 2000; Laffont and Martimort, 1999; Boyer and Laffont, 2003) and a recent body of empirical research (Ai and Sappington, 2002; Eckenrod, 2006) have been focusing on the relative merits—rates and investment level—of differently powered:
Bridging Regulation to Political Economy.

The New Theory of Regulation.

A long theoretical tradition (Laffont and Tirole, 1993; Laffont, 1996 and 2000; Laffont and Martimort, 1999; Boyer and Laffont, 2003) and a recent body of empirical research (Ai and Sappington, 2002; Eckenrod, 2006) have been focusing on the relative merits—rates and investment level—of differently powered:

Incentive Rules—i.e., contracts between a government/regulator and a natural monopoly on the level of unobserved cost reducing effort. Remark: the power of the contract rises with the equilibrium firm’s effort. Results:
The New Theory of Regulation.

A long theoretical tradition (Laffont and Tirole, 1993; Laffont, 1996 and 2000; Laffont and Martimort, 1999; Boyer and Laffont, 2003) and a recent body of empirical research (Ai and Sappington, 2002; Eckenrod, 2006) have been focusing on the relative merits–rates and investment level–of differently powered:

Incentive Rules–*i.e.*, contracts between a government/regulator and a natural monopoly on the level of unobserved cost reducing effort. Remark: the power of the contract rises with the equilibrium firm’s effort. Results:

1. optimal incentive schemes should trade off informational rents extraction and cost-saving inducement;
Bridging Regulation to Political Economy.

The New Theory of Regulation.

A long theoretical tradition (Laffont and Tirole, 1993; Laffont, 1996 and 2000; Laffont and Martimort, 1999; Boyer and Laffont, 2003) and a recent body of empirical research (Ai and Sappington, 2002; Eckenrod, 2006) have been focusing on the relative merits—rates and investment level—of differently powered:

Incentive Rules—*i.e.*, contracts between a government/regulator and a natural monopoly on the level of unobserved cost reducing effort. **Remark:** the power of the contract rises with the equilibrium firm’s effort. **Results:**

1. optimal incentive schemes should trade off informational rents extraction and cost-saving inducement;
2. performance based regulation (PBR, therein) can deliver lower rates and higher profits with no overall reduction in quality.
However,

- politicians care more or less about the firm’s profit depending on whether their constituency is dominated by pro-shareholder or pro-consumer sentiments;
However,

- politicians care more or less about the firm’s profit depending on whether their constituency is dominated by pro-shareholder or pro-consumer sentiments;

- the details of incentive contracts are designed by public officials who are accountable either to professional peers or to specific groups of voters and not to the society at large.
However,

- politicians care more or less about the firm’s profit depending on whether their constituency is dominated by pro-shareholder or pro-consumer sentiments;
- the details of incentive contracts are designed by public officials who are accountable either to professional peers or to specific groups of voters and not to the society at large.

How, therefore, do public officials’ incentives and motivations and politicians’ preferences interact with the rent extraction-efficiency trade off? Need:

- a simple and general study case;
Research Objectives and Strategy.

However,

- politicians care more or less about the firm’s profit depending on whether their constituency is dominated by pro-shareholder or pro-consumer sentiments;
- the details of incentive contracts are designed by public officials who are accountable either to professional peers or to specific groups of voters and not to the society at large.

How, therefore, do public officials’ incentives and motivations and politicians’ preferences interact with the rent extraction-efficiency trade off? Need:

- a simple and general study case;
- bridge mechanism design and political economy.
The Study Case: the US Electric Power Market.

- **Incentive Rules**: IOUs charge two part tariffs—no governmental subside is allowed. Thus, rates have been traditionally linked to average costs until the PBR revolution started in 1982 (Basheda et al., 2001).
The Study Case: the US Electric Power Market.

- **Incentive Rules**: IOUs charge two part tariffs—no governmental subside is allowed. Thus, rates have been traditionally linked to average costs until the PBR revolution started in 1982 (Basheda et al., 2001).

- **Quasi-judicial hearings**: files—regulatory reforms—follow a hierarchical trial routine. First regulators (chief of Public Utility Commission–PUC) sit on the bench then; if the filing is not approved (or appealed), an High Court rules *de novo* the case. Judges’ role is key (Teske, 2004).
The Study Case: the US Electric Power Market.

- **Incentive Rules**: IOUs charge two part tariffs—no governmental subside is allowed. Thus, rates have been traditionally linked to average costs until the PBR revolution started in 1982 (Basheda et al., 2001).

- **Quasi-judicial hearings**: files—regulatory reforms—follow a hierarchical trial routine. First regulators (chief of Public Utility Commission—PUC) sit on the bench then; if the filing is not approved (or appealed), an High Court rules *de novo* the case. Judges’ role is key (Teske, 2004).

- **Supervision—adversarial hearings**: in order to assure higher transparency, regulators and High Court judges only examine witnesses and experts, receive the evidence and interpret regulations; the final motion is proposed *de facto* by the PUC staff who acts as the jury in the anglo-american process (Gormley, 1983; CDRA, 1992).
The Study Case: the US Electric Power Market.

- **Incentive Rules**: IOUs charge two part tariffs—no governmental subside is allowed. Thus, rates have been traditionally linked to average costs until the PBR revolution started in 1982 (Basheda et al., 2001).

- **Quasi-judicial hearings**: files—regulatory reforms—follow a hierarchical trial routine. First regulators (chief of Public Utility Commission—PUC) sit on the bench then; if the filing is not approved (or appealed), an High Court rules *de novo* the case. Judges’ role is key (Teske, 2004).

- **Supervision–adversarial hearings**: in order to assure higher transparency, regulators and High Court judges only examine witnesses and experts, receive the evidence and interpret regulations; the final motion is proposed *de facto* by the PUC staff who acts as the jury in the anglo-american process (Gormley, 1983; CDRA, 1992).

Technology.

The regulated firm produces a variable scale product q charging a two part tariff $A + pq$ with $A > 0; p > 0; q > 0$. $S (q)$ is the representative consumer’s gross surplus.
Technology.

- The regulated firm produces a variable scale product q charging a two part tariff $A + pq$ with $A > 0; p > 0; q > 0$. $S(q)$ is the representative consumer’s gross surplus.

- The total cost is $C = \beta - a$. The inefficiency parameter is equal to: β with probability ν and $\bar{\beta}$ with probability $1 - \nu$. a is the firm’s cost-reducing effort and, in order to assure viability, the BC $A + (p - c)q(p) \geq t$ needs to be satisfied.
The Basic Model.

Technology.

- The regulated firm produces a variable scale product \(q \) charging a two part tariff \(A + pq \) with \(A > 0; p > 0; q > 0 \). \(S(q) \) is the representative consumer’s gross surplus.

- The total cost is \(C = \beta - a \). The inefficiency parameter is equal to: \(\beta \) with probability \(\nu \) and \(\bar{\beta} \) with probability \(1 - \nu \). \(a \) is the firm’s cost-reducing effort and, in order to assure viability, the BC \(A + (p - c)q(p) \geq t \) needs to be satisfied.

- The firm’s utility is \(U = t - \psi(a) \) where \(t \) are the managerial rewards and \(\psi \) with \(\psi' > 0, \psi'' > 0, \psi''' > 0 \) is the effort cost function. Define \(\Phi(a) \equiv \psi(a) - \psi(a - \Delta\beta) \). The IR constraint \(U \geq 0 \) is imposed. Thus, the ex-ante expected social welfare can be written as:

\[
W = V(q) - (1 + \lambda) [((\beta - a)q + \psi(a)] - \lambda U.
\]

where \(V(q) = (1 + \lambda)S(q) \).
The planner obtains two truthful and orthogonal signals whose precisions’ technology is multiplicative in each supervisor $i = E, A, l = J, R$’s effort $e_{i,l}^*$ and in the common random ability $\alpha \sim f$ with $\alpha \in [0, 1]$: $\xi_{i,l}^* = \alpha e_{i,l}^*$.

Information.
The planner obtains two truthful and orthogonal signals whose precisions’ technology is multiplicative in each supervisor $i = E, A, l = J, R$’s effort e^*_i, l and in the common random ability $\alpha \sim f$ with $\alpha \in [0, 1]$: $\xi^*_i, l = \alpha e^*_i, l$.

In particular, each signal is such that if the type is β the planner is informed with probability ξ^*_i, l; when the type is $\bar{\beta}$, she always remains uninformed—the court wants to prove that the firm is indeed efficient.
Timing: Endogenous Division of Powers.

1. Society learns the nature of the regulatory environment; next, the firm only discovers the realization of the marginal cost.
Timing: Endogenous Division of Powers.

1. Society learns the nature of the regulatory environment; next, the firm only discovers the realization of the marginal cost.

2. The planner offers the firm a menu of \((t, c)\) pairs contingent on the eventual signals. If the firm declines, the game ends.
The Basic Model.

Timing: Endogenous Division of Powers.

1. Society learns the nature of the regulatory environment; next, the firm only discovers the realization of the marginal cost.

2. The planner offers the firm a menu of \((t, c)\) pairs contingent on the eventual signals. If the firm declines, the game ends.

3. The regulator chooses her level of effort; next, she discovers her random ability and, at last, the planner receives the first signal. If the latter is informative, the first best is implemented; if not:

4. The judge chooses her level of effort; next, she discovers her random ability and, at last, the planner receives the second signal.

5. If also this signal is uninformative, the planner asks the firm to report its information. Next, the firm exerts the equilibrium effort and the rewards-cost pair is implemented. Finally, the signals' precision are revealed and each supervisor receives her reward.
The Basic Model.

Timing: Endogenous Division of Powers.

1. Society learns the nature of the regulatory environment; next, the firm only discovers the realization of the marginal cost.

2. The planner offers the firm a menu of \((t, c)\) pairs contingent on the eventual signals. If the firm declines, the game ends.

3. The regulator chooses her level of effort; next, she discovers her random ability and, at last, the planner receives the first signal. If the latter is informative, the first best is implemented; if not:

4. The judge chooses her level of effort; next, she discovers her random ability and, at last, the planner receives the second signal.
Timing: Endogenous Division of Powers.

1. Society learns the nature of the regulatory environment; next, the firm only discovers the realization of the marginal cost.

2. The planner offers the firm a menu of \((t, c)\) pairs contingent on the eventual signals. If the firm declines, the game ends.

3. The regulator chooses her level of effort; next, she discovers her random ability and, at last, the planner receives the first signal. If the latter is informative, the first best is implemented; if not:

4. The judge chooses her level of effort; next, she discovers her random ability and, at last, the planner receives the second signal.

5. If also this signal is uninformative, the planner asks the firm to report its information. Next, the firm exert the equilibrium effort and the rewards-cost pair is implemented. Finally, the signals precision are revealed and each supervisor receive her reward.
Supervisors’ Incentives and Motivations: Framework.

Supervisor of type i,l’s objective function:
Supervisors’ Incentives and Motivations: Framework.

Supervisor of type i,l’s objective function:

$$R_{i,l}(e_{i,l}, S) = \left\{ 1 + \left[(1 - SR) G^i(e_{i,l}) - (1 - (1 - S) J) (1 - K) \tilde{C}(e_{i,l}) \right] \right\} r$$

$S = 1$ whenever $l = R$ and 0 otherwise. Moreover:
The Basic Model.

Supervisors’ Incentives and Motivations: Framework.

Supervisor of type i,l’s objective function:

$$R_{i,l}(e_{i,l}, S) = \left\{ 1 + \left[(1 - SR) G^i(e_{i,l}) - (1 - (1 - S) J) (1 - K) \tilde{C}(e_{i,l}) \right] \right\} r$$

$S = 1$ whenever $l = R$ and 0 otherwise. Moreover:

1. R and J are the *revolving door* and *fairness* parameters. These legacy-intrinsic motivations terms black-box wide strands of literature on bureaucrats and judicial attitudes (Gormley, 1983; Gennaioli and Shleifer, 2008);
Supervisors’ Incentives and Motivations: Framework.

Supervisor of type i, l’s objective function:

$$R_{i,l}(e_{i,l}, S) = \left\{ 1 + \left[(1 - SR) G^i(e_{i,l}) - (1 - (1 - S) J)(1 - K) \tilde{C}(e_{i,l}) \right] \right\} r$$

$S = 1$ whenever $l = R$ and 0 otherwise. Moreover:

1. R and J are the revolving door and fairness parameters. These legacy-intrinsic motivations terms black-box wide strands of literature on bureaucrats and judicial attitudes (Gormley, 1983; Gennaioli and Shleifer, 2008);

2. The rewards from implicit incentives $G^i(\cdot)$ are such that: $G^E(e_{E,l}) = \Pr\{\xi_{E,l} \geq \xi^*\}$ and $G^A(e_{A,l}) = E[E(\alpha/\xi_{A,l})]$ (Alesina and Tabellini, 2007);
The Basic Model.

Supervisors’ Incentives and Motivations: Framework.

Supervisor of type i,l’s objective function:

$$R_{i,l}(e_{i,l}, S) = \left\{ 1 + \left[(1 - SR) G^i(e_{i,l}) - (1 - (1 - S) J) (1 - K) \tilde{C}(e_{i,l}) \right] \right\} r$$

$S = 1$ whenever $l = R$ and 0 otherwise. Moreover:

1. R and J are the **revolving door** and **fairness** parameters. These legacy-intrinsic motivations terms black-box wide strands of literature on bureaucrats and judicial attitudes (Gormley, 1983; Gennaioli and Shleifer, 2008);

2. The rewards from implicit incentives $G^i(\cdot)$ are such that: $G^E(e_{E,l}) = Pr\{\xi_{E,l} \geq \xi^*\}$ and $G^A(e_{A,l}) = E[E(\alpha/\xi_{A,l})]$ (Alesina and Tabellini, 2007);

3. $\tilde{C}(\cdot)$ is the supervisors’ effort cost function and K an efficiency of the information-gathering technology parameter.
The Planner’s Problem.

Define the ex-ante expected probability of at least one informative signal as

$$\gamma (i, j) \equiv E (\xi_{i,R}) + [1 - E (\xi_{i,R})] E (\xi_{j,J}).$$
The Basic Model.

The Planner’s Problem.

Define the ex-ante expected probability of at least one informative signal as
\[\gamma (i,j) \equiv E (\xi_{i,R}) + [1 - E (\xi_{i,R})] E (\xi_{j,J}). \]

The planner’s objective function is:

\[\tilde{W}^s = v\gamma (i,j) W^* + \]
\[+ [1 - v\gamma (i,j)] \left\{ \frac{v [1 - \gamma (i,j)]}{1 - v\gamma (i,j)} \left[V (\bar{q}^s) - (1 + \lambda) \left[(\beta - \bar{a}^s) q^s + \psi (q^s) \right] - \lambda \Phi (\bar{a}^s) \right] \right\} \]
\[+ \frac{1 - v}{1 - v\gamma (i,j)} \left[V (\bar{q}^s) - (1 + \lambda) \left[(\bar{\beta} - \bar{a}^s) \bar{q}^s + \psi (\bar{a}^s) \right] \right] - 2 (1 + \mu) r \]
Static Efficiency: LEMMA.

If the instantaneous probability of a better than the mean supervisor is not too low, \(i.e. f(\bar{\alpha}) > 1 \)–not too many extreme types:
Static Efficiency: LEMMA.

If the instantaneous probability of a better than the mean supervisor is not too low, *i.e.* \(f(\bar{\alpha}) > 1 \)–not too many extreme types:

1. at stage 3 and 4, ranked equilibrium efforts:

 \[e^*_{E,J} > e^*_{A,J}, e^*_{E,R} > e^*_{A,R}. \]
Static Efficiency: LEMMA.

If the instantaneous probability of a better than the mean supervisor is not too low, i.e. $f(\bar{\alpha}) > 1$–not too many extreme types:

1. at stage 3 and 4, ranked equilibrium efforts: $e^*_E,J > e^*_A,J, e^*_E,R > e^*_A,R$.

2. at stage 2, the usual rent extraction-effort distortion trade off leading to a rent at the top and a distortion at the bottom.
Static Efficiency: LEMMA.

If the instantaneous probability of a better than the mean supervisor is not too low, \(i.e. f(\bar{\alpha}) > 1 \)–not too many extreme types:

1. at stage 3 and 4, ranked equilibrium efforts:
 \[e_{E,J}^* > e_{A,J}^* , e_{E,R}^* > e_{A,R}^* . \]
2. at stage 2, the usual rent extraction-effort distortion trade off leading to a rent at the top and a distortion at the bottom.

Thus, in a PBE, the level of prices and the power of the contract are determined by the low type effort:

\[
\psi'(\hat{a}^s) = \hat{q}^s - \frac{\lambda}{1+\lambda} \Gamma(v) \left[1 - \gamma(i,j) \right] \Phi'(\hat{a}^s),
\]

where the rent \(\Phi(a) \equiv \psi(a) - \psi(a - \Delta \beta) \) has \(\Phi' > 0, \Phi'' > 0 \).
Static Efficiency: Proposition 1.

The power of the optimal incentive rule

1. rises with the efficiency of the information-gathering technology;
Static Efficiency: Proposition 1.

The power of the optimal incentive rule

1. rises with the efficiency of the information-gathering technology;

2. rises when supervisors are elected;
Static Efficiency: Proposition 1.

The power of the optimal incentive rule

1. rises with the efficiency of the information-gathering technology;

2. rises when supervisors are elected;

3. increases (decreases) with the strength of the fairness (revolving door) motivations.
Static Efficiency: Proposition 1.

The power of the optimal incentive rule

1. rises with the efficiency of the information-gathering technology;

2. rises when supervisors are elected;

3. increases (decreases) with the strength of the fairness (revolving door) motivations.
Static Efficiency: Proposition 1.

The power of the optimal incentive rule

1. rises with the efficiency of the information-gathering technology;

2. rises when supervisors are elected;

3. increases (decreases) with the strength of the fairness (revolving door) motivations.

Remark 1: Two extents of complementarities: the political (in the spirit of Gibbons and Murphy, 1992) and the technological one.

Remark 2: Endogenous collusion proofness coherently to Ka and Teske (2002).
Dynamic Efficiency: Proposition 2 and 3.

Tension between rent-extraction and investment inducement. If the investment is cost-reducing—*i.e.*, no contrast among consumers:
Dynamic Efficiency: Proposition 2 and 3.

Tension between rent-extraction and investment inducement. If the investment is cost-reducing—*i.e.*, no contrast among consumers:

Proposition 2: A benevolent planner prefers higher powered incentive rules when faced with high cost industries.
Dynamic Efficiency: Proposition 2 and 3.

Tension between rent-extraction and investment inducement. If the investment is cost-reducing—i.e., no contrast among consumers:

Proposition 2: A benevolent planner prefers higher powered incentive rules when faced with high cost industries.

If the investment is, instead, profit-enhancing—e.g., quality, advertisement, a contrast between pro-shareholder (Republican) and pro-consumers (Democratic) parties arises. If the planner is the incumbent party:
Dynamic Efficiency: Proposition 2 and 3.

Tension between rent-extraction and investment inducement. If the investment is cost-reducing—i.e., no contrast among consumers:

Proposition 2: A benevolent planner prefers higher powered incentive rules when faced with high cost industries.

If the investment is, instead, profit-enhancing—e.g., quality, advertisement, a contrast between pro-shareholder (Republican) and pro-consumers (Democratic) parties arises. If the planner is the incumbent party:

Proposition 3: The power of the optimal incentive scheme increases when the reformer is Republican and falls with the strength of the political competition (strategic dynamic as in Alesina and Tabellini, 1990; Hanssen, 2004). **Example:** Maine reform pushed by Republican legislature.
Dynamic Efficiency: Proposition 2 and 3.

Tension between rent-extraction and investment inducement. If the investment is cost-reducing—*i.e.*, no contrast among consumers:

Proposition 2: A benevolent planner prefers higher powered incentive rules when faced with high cost industries.

If the investment is, instead, profit-enhancing—*e.g.*, quality, advertisement, a contrast between pro-shareholder (Republican) and pro-consumers (Democratic) parties arises. If the planner is the incumbent party:

Proposition 3: The power of the optimal incentive scheme increases when the reformer is Republican and falls with the strength of the political competition (strategic dynamic as in Alesina and Tabellini, 1990; Hanssen, 2004). **Example:** Maine reform pushed by Republican legislature.
Testable Predictions.

The likelihood of a reform toward higher powered rules will
Testable Predictions.

The likelihood of a reform toward higher powered rules will

1. rise if supervisors are elected and increase (decrease) with the strength of fairness (revolving door) motivations;
Testable Predictions.

The likelihood of a reform toward higher powered rules will

1. rise if supervisors are elected and increase (decrease) with the strength of fairness (revolving door) motivations;

2. rise with the efficiency of the information-gathering technology and society’s investment concerns;
The likelihood of a reform toward higher powered rules will

1. rise if supervisors are elected and increase (decrease) with the strength of fairness (revolving door) motivations;

2. rise with the efficiency of the information-gathering technology and society’s investment concerns;

3. increase with the incumbent’s grip on power and if the reformer is Republican.
Non Random Incentive Rules Selection.

Testable Predictions.

The likelihood of a reform toward higher powered rules will

1. rise if supervisors are elected and increase (decrease) with the strength of fairness (revolving door) motivations;

2. rise with the efficiency of the information-gathering technology and society’s investment concerns;

3. increase with the incumbent’s grip on power and if the reformer is Republican.
Between 1982 and 2002, 41 of the 144 major IOUs operating in 25 of the 46 US states in the sample switched to some kind of Performance Based Regulation (PBR). Remark: From 1996, a great wave of restructuring has deeply affected the strategic environment, therefore use the 1982-1997 sample (Sources: Basheda et al. 2001, EEI, 2000).

Dependent Variable:

1. \(\text{PBR}_i, t \) equal 1 in state \(i \) and year \(t \) if cost of service was in place, 2 if rate case moratoria or revenue sharing was employed and 3 if a price cap was used.

2. \(\text{PBR}_i, t \) equal 1 if a PBR contract was in place in state \(i \) in year \(t \).
The Institutional Experiment.

- Between 1982 and 2002, 41 of the 144 major IOUs operating in 25 of the 46 US states in the sample switched to some kind of Performance Based Regulation (PBR). Remark: From 1996, a great wave of restructuring has deeply affected the strategic environment, therefore use the 1982-1997 sample (Sources: Basheda et al. 2001, EEI, 2000).
The Institutional Experiment.

- Between 1982 and 2002, 41 of the 144 major IOUs operating in 25 of the 46 US states in the sample switched to some kind of Performance Based Regulation (PBR). Remark: From 1996, a great wave of restructuring has deeply affected the strategic environment, therefore use the 1982-1997 sample (Sources: Basheda et al. 2001, EEI, 2000).

- Dependent Variable:
 1. \(PBR _ O_{i,t} \) equal 1 in state \(i \) and year \(t \) if cost of service was in place, 2 if rate case moratoria or revenue sharing was employed and 3 if a price cap was used.
 2. \(PBR_{i,t} \) equal 1 if a PBR contract was in place in state \(i \) in year \(t \).
The Institutional Experiment.

- Between 1982 and 2002, 41 of the 144 major IOUs operating in 25 of the 46 US states in the sample switched to some kind of Performance Based Regulation (PBR). **Remark:** From 1996, a great wave of restructuring has deeply affected the strategic environment, therefore use the 1982-1997 sample (Sources: Basheda et al. 2001, EEI, 2000).

- Dependent Variable:
 1. \(PBR_\text{O}_i,t \) equal 1 in state \(i \) and year \(t \) if cost of service was in place, 2 if rate case moratoria or revenue sharing was employed and 3 if a price cap was used.
 2. \(PBR_{i,t} \) equal 1 if a PBR contract was in place in state \(i \) in year \(t \).
Estimation Strategy.

Remark: Given that several controls lack enough time variation a fixed or random effect model is not viable.
Non Random Incentive Rules Selection.

Estimation Strategy.

Remark: Given that several controls lack enough time variation a fixed or random effect model is not viable.

- Want to identify the relevant determinants of the relative power of the incentive scheme in place. Use the following ordered logit:

\[
Pr(y_{i,t} = k | z_{i,t}) = \Lambda(\tau_k - \beta' z_{i,t}) - \Lambda(\tau_{k-1} - \beta' z_{i,t}) \quad \text{for} \quad k = 1, 2, 3
\]

with \(k = \) power levels, \(i = \) states, \(t = \) time-years, \(\tau_k = \) unknown threshold parameters, \(\Lambda = \) logit function and \(y_{i,t} = PBR_O \).
Non Random Incentive Rules Selection.

Estimation Strategy.

Remark: Given that several controls lack enough time variation a fixed or random effect model is not viable.

- Want to identify the relevant determinants of the relative power of the incentive scheme in place. Use the following ordered logit:
 \[Pr(y_{i,t} = k | z_{i,t}) = \Lambda(\tau_k - \beta' z_{i,t}) - \Lambda(\tau_{k-1} - \beta' z_{i,t}) \]
 for \(k = 1, 2, 3 \)
 with \(k = \) power levels, \(i = \) states, \(t = \) time-years, \(\tau_k = \) unknown threshold parameters, \(\Lambda = \) logit function and \(y_{i,t} = PBR_O \).

- Want to identify the relevant determinants of the PBR introduction timing. Use the following exponential proportional hazard rate model:
 \[\lambda(t, z_{i,t}) = \exp(\beta' z_{i,t}) \lambda_t^* \]
 with \(\lambda_t^* = \) baseline hazard and \(z_{i,t} = PBR \). Notice that a coefficient greater than one implies higher odds that an individual in the treatment group implements the reform before one in the control group.
Choosing Proxies.

- While *Reg_Elec* and *Jud_Elec* capture re-election vis-a-vis re-appointment incentives;
Choosing Proxies.

- While *Reg_Elec* and *Jud_Elec* capture re-election vis-a-vis re-appointment incentives;

- *Rev_Door* and *Jud_Term* measures noisily intrinsic motivations. Indeed, the relation between judges’ "fairness" motivations and *Jud_Term* can be U-shaped and *Rev_Door* can be positively linked to revolving door motivations if restrictions on industry job offers just force regulators to try harder;
Choosing Proxies.

- While \textit{Reg_Elec} and \textit{Jud_Elec} capture re-election vis-a-vis re-appointment incentives;

- \textit{Rev_Door} and \textit{Jud_Term} measures noisily intrinsic motivations. Indeed, the relation between judges’ "fairness" motivations and \textit{Jud_Term} can be \textit{U-shaped} and \textit{Rev_Door} can be positively linked to revolving door motivations if restrictions on industry job offers just force regulators to try harder;

- \textit{Budget} is a raw proxy for more resources to allocate in information-gathering;
Choosing Proxies.

- While *Reg_Elec* and *Jud_Elec* capture re-election vis-a-vis re-appointment incentives;

- *Rev_Door* and *Jud_Term* measures noisily intrinsic motivations. Indeed, the relation between judges’ "fairness" motivations and *Jud_Term* can be U-shaped and *Rev_Door* can be positively linked to revolving door motivations if restrictions on industry job offers just force regulators to try harder;

- *Budget* is a raw proxy for more resources to allocate in information-gathering;

- While *Price_R(-2)* is linked to more costly production structure, *Rep* summarizes the planner’s tastes.
Non Random Incentive Rules Selection

<table>
<thead>
<tr>
<th></th>
<th>PBR_O</th>
<th>PBR_O=3</th>
<th>PBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg_Elec</td>
<td>2.353</td>
<td>0.055</td>
<td>5.328</td>
</tr>
<tr>
<td></td>
<td>(0.368)**2</td>
<td>(0.013)**</td>
<td>(3.417)**</td>
</tr>
<tr>
<td>Jud_Elec</td>
<td>0.080</td>
<td>0.001</td>
<td>0.562</td>
</tr>
<tr>
<td></td>
<td>(0.298)</td>
<td>(0.003)</td>
<td>(0.315)</td>
</tr>
<tr>
<td>Rev_Door</td>
<td>-0.893</td>
<td>-0.011</td>
<td>0.554</td>
</tr>
<tr>
<td></td>
<td>(0.345)**3</td>
<td>(0.005)**</td>
<td>(0.407)</td>
</tr>
<tr>
<td>Jud_Term</td>
<td>-0.082</td>
<td>-0.0008</td>
<td>1.106</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(0.0007)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Budget</td>
<td>0.00002</td>
<td>2.08E^{-07}</td>
<td>1.00001</td>
</tr>
<tr>
<td></td>
<td>(4.47E^{-06})**3</td>
<td>(0.00000)**</td>
<td>(4.44E^{-06})**</td>
</tr>
<tr>
<td>Price_R(-2)</td>
<td>0.428</td>
<td>0.004</td>
<td>0.878</td>
</tr>
<tr>
<td></td>
<td>(0.159)**3</td>
<td>(0.002)**</td>
<td>(0.188)</td>
</tr>
<tr>
<td>Republican</td>
<td>0.073</td>
<td>0.0007</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>(0.351)</td>
<td>(0.004)</td>
<td>(0.446)</td>
</tr>
<tr>
<td>Majority</td>
<td>2.527</td>
<td>0.025</td>
<td>6.281</td>
</tr>
<tr>
<td></td>
<td>(1.416)</td>
<td>(0.013)**</td>
<td>(15.581)</td>
</tr>
<tr>
<td>PBR_Nei</td>
<td>0.328</td>
<td>0.003</td>
<td>7.779</td>
</tr>
<tr>
<td></td>
<td>(0.956)</td>
<td>(0.010)</td>
<td>(12.637)</td>
</tr>
<tr>
<td>Population</td>
<td>7.17E^{-08}</td>
<td>7.22E^{-10}</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(2.72E^{-08})**3</td>
<td>(0.00000)**</td>
<td>(2.71E^{-08})*</td>
</tr>
<tr>
<td>GSP</td>
<td>0.0001</td>
<td>1.02E^{-06}</td>
<td>1.0002</td>
</tr>
<tr>
<td></td>
<td>(0.00004)**3</td>
<td>(0.00000)**</td>
<td>(0.00007)**</td>
</tr>
<tr>
<td>Estimation</td>
<td>Ordered logit (coefficients)</td>
<td>Ordered logit (marginal effects)</td>
<td>Exponential survival (hazard ratio)</td>
</tr>
<tr>
<td>Likelihood</td>
<td>Ordered logit (coefficients)</td>
<td>Ordered logit (marginal effects)</td>
<td>Exponential survival (hazard ratio)</td>
</tr>
<tr>
<td>Log Pseudolikelihood</td>
<td>-183.300</td>
<td>-183.300</td>
<td>-22.365</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Number of Observations</td>
<td>736</td>
<td>736</td>
<td>692</td>
</tr>
</tbody>
</table>

1 Robust standard errors (z distribution) in parentheses;
2 *** denotes significant at the 1% confidence level; **, 5%; *, 10%.
Non Random Incentive Rules Selection.

<table>
<thead>
<tr>
<th>Variable</th>
<th>PBR_O=3</th>
<th>PBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg_Elec</td>
<td>0.055</td>
<td>5.328</td>
</tr>
<tr>
<td></td>
<td>(0.013)3*4</td>
<td>(3.417)**</td>
</tr>
<tr>
<td>Jud_Elec</td>
<td>0.001</td>
<td>0.562</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.315)</td>
</tr>
<tr>
<td>Rev_Door</td>
<td>-0.011</td>
<td>0.554</td>
</tr>
<tr>
<td></td>
<td>(0.005)**</td>
<td>(0.407)</td>
</tr>
<tr>
<td>Jud_Term</td>
<td>-0.0008</td>
<td>1.106</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Budget</td>
<td>2.08E-07</td>
<td>1.00001</td>
</tr>
<tr>
<td></td>
<td>(0.000)5*6</td>
<td>(4.44E-06)*****</td>
</tr>
<tr>
<td>Price_R(-2)</td>
<td>0.004</td>
<td>0.878</td>
</tr>
<tr>
<td></td>
<td>(0.002)**</td>
<td>(0.188)</td>
</tr>
</tbody>
</table>

Estimation: Ordered logit (marginal effects) Exponential survival (hazard ratio)

3 Robust standard errors (z distribution) in parentheses;

4 *** denotes significant at the 1% confidence level; **, 5%; *, 10%.

5 Robust standard errors (z distribution) in parentheses;

6 *** denotes significant at the 1% confidence level; **, 5%; *, 10%.
Non Random Incentive Rules Selection

<table>
<thead>
<tr>
<th></th>
<th>$PBR_O=3$</th>
<th>PBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Republican</td>
<td>0.0007 (0.004)</td>
<td>0.625 (0.446)</td>
</tr>
<tr>
<td>Majority</td>
<td>0.025 (0.013)*</td>
<td>6.281 (15.581)</td>
</tr>
<tr>
<td>PBR_Nei</td>
<td>0.003 (0.010)</td>
<td>7.779 (12.637)</td>
</tr>
<tr>
<td>Population</td>
<td>$7.22E^{-10}$ (0.0000)***</td>
<td>1 (2.71E^{-08})*</td>
</tr>
<tr>
<td>GSP</td>
<td>$1.02E^{-06}$ (0.0000)**</td>
<td>1.0002 (0.00007)**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Ordered logit (marginal effects)</th>
<th>Exponential survival (hazard ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood</td>
<td></td>
<td>- 22.365</td>
</tr>
<tr>
<td>Log Pseudolikelihood</td>
<td>- 183.300</td>
<td></td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Number of Observations</td>
<td>736</td>
<td>692</td>
</tr>
</tbody>
</table>

Take Home Idea: PBR reforms were not random but mainly guided by efficiency and political forward-looking factors as predicted by the model.

Take Home Idea: PBR reforms were not random but mainly guided by efficiency and political forward-looking factors as predicted by the model.

Remark: I obtain very similar results when Reg_Elec and Jud_Elec are treated as endogenous and instrumented with the share of neighbouring states using election and year in which the state joined the Union.

Take Home Idea: PBR reforms were not random but mainly guided by efficiency and political forward-looking factors as predicted by the model.

Remark: I obtain very similar results when Reg_Elec and Jud_Elec are treated as endogenous and instrumented with the share of neighbouring states using election and year in which the state joined the Union.

Endogeneity: states may well self select into PBR on the bases of unobserved shocks affecting at the same time, for instance, the cost structure and the political saliency of the reform.
Therefore, when assessing the impact of PBR on performances, need to measure the truly exogenous variation in institutions. Strategy:

\[y_{si,t} = \eta_i + \vartheta_t + \theta y_{si,t-1} + \phi PBR_i,t + \psi X_{i,t} + \epsilon_{i,t}, \]

where \(y_{si,t} \) is a price for ratepayers class \(s \); \(X_{i,t} \) gathers the time-varying determinants of incentive rules, a fossil fuels cost index \(c \) and other controls.

Remark: treat both PBR and \(c \) as endogenous and \(y_{si,t-1} \) as predeterminated.

Both prices and marginal costs are autoregressive of order 1. An extra exogenous instrument is:

\[PBR_{-Nei} \] (Steiner, 2004).

Therefore, when assessing the impact of PBR on performances, need to measure the truly exogenous variation in institutions. Strategy:

Use the Arellano and Bond difference GMM estimator to estimate:

\[y_{i,t}^s = \eta_i + \varphi_t + \theta y_{i,t1}^s + \phi PBR_{i,t} + \varphi X_{i,t} + \epsilon_{i,t}, \]

where \(y_{i,t}^s \) is a price for ratepayers class \(s \); \(X_{i,t} \) gathers the time-varying determinants of incentive rules, a fossil fuels cost index \(c \) and other controls.

Therefore, when assessing the impact of PBR on performances, need to measure the truly exogenous variation in institutions. Strategy:

Use the Arellano and Bond difference GMM estimator to estimate:

\[y_{i,t}^s = \eta_i + \vartheta_t + \theta y_{i,t-1}^s + \phi PBR_{i,t} + \varphi X_{i,t} + \epsilon_{i,t}, \]

where \(y_{i,t}^s \) is a price for ratepayers class \(s \); \(X_{i,t} \) gathers the time-varying determinants of incentive rules, a fossil fuels cost index \(c \) and other controls.

Remark: treat both PBR and \(c \) as endogenous and \(y_{i,t-1}^s \) as predetermined. Both prices and marginal costs are autoregressive of order 1. An extra exogenous instrument is: \(PBR_Nei \) (Steiner, 2004).
Incentive Rules and Regulated Rates: Results.

<table>
<thead>
<tr>
<th></th>
<th>Price(_R)</th>
<th>Price(_C)</th>
<th>Price(_I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBR</td>
<td>0.126</td>
<td>-0.100</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>(0.214)</td>
<td>(0.163)</td>
<td>(0.139)</td>
</tr>
<tr>
<td>Other Controls</td>
<td>Reg(\text{Elec}), Jud(\text{Elec}), Budget, Republican, Majority, Population, Young, Old, GSP.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predetermined</td>
<td>LaggedDependentVariable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous</td>
<td>c, PBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments (collapsed)</td>
<td>One lag of dependent and c, PBR(_\text{Nei})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation</td>
<td>Fixed state and time effects difference GMM estimator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments Count</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Autocov. of order 2</td>
<td>0.74</td>
<td>0.54</td>
<td>0.68</td>
</tr>
<tr>
<td>Hansen test for overid.</td>
<td>0.90</td>
<td>0.46</td>
<td>0.67</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>644</td>
<td>644</td>
<td>644</td>
</tr>
</tbody>
</table>
Three Main Contributions.

1. The paper formalizes and tests a theory of complementarities among supervisors’ implicit and firms’ explicit incentives arising from the contractability of the firms’ allocation as opposed to the non-contractability of supervisors’ effort.
Three Main Contributions.

1. The paper formalizes and tests a theory of complementarities among supervisors’ implicit and firms’ explicit incentives arising from the contractability of the firms’ allocation as opposed to the non-contractability of supervisors’ effort.

2. Endogenous Collusion Proofness.
Three Main Contributions.

1. The paper formalizes and tests a theory of complementarities among supervisors’ implicit and firms’ explicit incentives arising from the contractability of the firms’ allocation as opposed to the non-contractability of supervisors’ effort.

2. Endogenous Collusion Proofness.

3. First empirical analysis of the efficiency and strategic political determinants of incentive regulation and the first test of the endogenous impact of incentive rules on prices: the reforming wave was mainly aided to repay sunk investments.
Advices for Constitutional Designers.

1. It is crucial to assess the dynamic effects of more powerful rules when expropriation of sunk investment is a concern;
Advices for Constitutional Designers.

1. It is crucial to assess the dynamic effects of more powerful rules when expropriation of sunk investment is a concern;

2. Before calibrating the power of the explicit incentives to be imposed on the regulated firm, the efficiency of the information-gathering technology and the broad set of concerns to which supervisors respond need to be considered attentively;
Advices for Constitutional Designers.

1. It is crucial to assess the dynamic effects of more powerful rules when expropriation of sunk investment is a concern;

2. Before calibrating the power of the explicit incentives to be imposed on the regulated firm, the efficiency of the information-gathering technology and the broad set of concerns to which supervisors respond need to be considered attentively;

3. The success of regulatory regime reforms cannot abstract from a Constitutional table insulated from short-term electoral boosts.
Accountability in Government and Regulation Policy.

Guerriero (2008) focuses on a simplified version of the model in order to characterize the optimal selection of supervisors’ implicit incentives problem. Main Results:
Accountability in Government and Regulation Policy.

Guerriero (2008) focuses on a simplified version of the model in order to characterize the optimal selection of supervisors’ implicit incentives problem. Main Results:

- **Theory**: Reforms toward election rather than appointment of regulators are more likely the less efficient is the information-gathering technology, the less stringent are investment concerns, and the closer is political competition.
Guerriero (2008) focuses on a simplified version of the model in order to characterize the optimal selection of supervisors’ implicit incentives problem. Main Results:

- **Theory**: Reforms toward election rather than appointment of regulators are more likely the less efficient is the information-gathering technology, the less stringent are investment concerns, and the closer is political competition.

- **Evidence**: These predictions are consistent with US electricity data. Also, regulated rates are lower and respond less to shocks in input costs in states electing their PUC commissioners and/or their High Court judges.
Accountability in Government and Regulation Policy.

Guerriero (2008) focuses on a simplified version of the model in order to characterize the optimal selection of supervisors’ implicit incentives problem. Main Results:

- **Theory**: Reforms toward election rather than appointment of regulators are more likely the less efficient is the information-gathering technology, the less stringent are investment concerns, and the closer is political competition.

- **Evidence**: These predictions are consistent with US electricity data. Also, regulated rates are lower and respond less to shocks in input costs in states electing their PUC commissioners and/or their High Court judges.
The Complementarities Patterns.

\[F = \beta - a^*, \quad F' = \bar{\beta} - a^*, \quad F'' = \bar{C} = \beta - \hat{a} \]
Follow Alesina and Tabellini (2008) and assume that supervisors have two tasks and a lobby interested in maximizing the firm’s rent can offer to each supervisor a side contract–illegal bribes or legal campaign funds–conditional on the effort exerted in the other activity–e.g., avoiding by-passing.
Follow Alesina and Tabellini (2008) and assume that supervisors have two tasks and a lobby interested in maximizing the firm’s rent can offer to each supervisor a side contract—illegal bribes or legal campaign funds—conditional on the effort exerted in the other activity—e.g., avoiding by-passing.

In the background:

1. The technology of the second task is \(h_{i,l} = \alpha e^{h}_{i,l} \) and its benefits are negligible for consumers and \(\kappa h_{i,l} \) with \(\kappa > 0 \) for the firm;
Endogenous Collusion Proofness: Set Up.

- Follow Alesina and Tabellini (2008) and assume that supervisors have two tasks and a lobby interested in maximizing the firm’s rent can offer to each supervisor a side contract—illegal bribes or legal campaign funds—conditional on the effort exerted in the other activity—e.g., avoiding by-passing.

- In the background:

1. The technology of the second task is \(h_{i,l} = \alpha e_{i,l}^h \) and its benefits are negligible for consumers and \(\kappa h_{i,l} \) with \(\kappa > 0 \) for the firm;
2. \(\alpha \) is now truncated normally distributed;
Endogenous Collusion Proofness: Set Up.

- Follow Alesina and Tabellini (2008) and assume that supervisors have two tasks and a lobby interested in maximizing the firm’s rent can offer to each supervisor a side contract—illegal bribes or legal campaign funds—conditional on the effort exerted in the other activity—e.g., avoiding by-passing.

- In the background:

 1. The technology of the second task is $h_{i,l} = \alpha e_{i,l}^h$ and its benefits are negligible for consumers and $\kappa h_{i,l}$ with $\kappa > 0$ for the firm;
 2. α is now truncated normally distributed;
 3. The planner cannot condition her choice—i.e., incentive schemes—on the supervisors’ collusive activities.
Endogenous Collusion Proofness: Results.

1. Appointed supervisors:
 - For sufficiently strong non-monetary incentives, supervisors never accept bribes; at the same time, the lobby prefers to be ex-ante passive if the firm’s stake is too narrow or legal systems work efficiently.
Endogenous Collusion Proofness: Results.

1. Appointed supervisors:
 - For sufficiently strong non-monetary incentives, supervisors never accept bribes; at the same time, the lobby prefers to be ex-ante passive if the firm’s stake is too narrow or legal systems work efficiently.
 - Strong (weak) fairness (revolving door) motivations favor capture-free equilibria.
Endogenous Collusion Proofness: Results.

1. Appointed supervisors:
 - For sufficiently strong non-monetary incentives, supervisors never accept bribes; at the same time, the lobby prefers to be ex-ante passive if the firm’s stake is too narrow or legal systems work efficiently.
 - Strong (weak) fairness (revolving door) motivations favor capture-free equilibria.

2. Elected supervisors:
 - Full-capture equilibria—in which supervisors’ effort in the information disclosure task is 0—are never optimal because, given the multiplicative effort technology, corrupted candidates loose elections with probability 1.
Endogenous Collusion Proofness: Results.

1. Appointed supervisors:
 - For sufficiently strong non-monetary incentives, supervisors never accept bribes; at the same time, the lobby prefers to be ex-ante passive if the firm’s stake is too narrow or legal systems work efficiently.
 - Strong (weak) fairness (reversing door) motivations favor capture-free equilibria.

2. Elected supervisors:
 - Full-capture equilibria—in which supervisors’ effort in the information disclosure task is 0—are never optimal because, given the multiplicative effort technology, corrupted candidates loose elections with probability 1.
 - The lobby is not willing to side contract if money is not very effective in swaying votes.
Endogenous Collusion Proofness: Results.

1. Appointed supervisors:
 - For sufficiently strong non-monetary incentives, supervisors never accept bribes; at the same time, the lobby prefers to be ex-ante passive if the firm’s stake is too narrow or legal systems work efficiently.
 - Strong (weak) fairness (revolving door) motivations favor capture-free equilibria.

2. Elected supervisors:
 - Full-capture equilibria—in which supervisors’ effort in the information disclosure task is 0—are never optimal because, given the multiplicative effort technology, corrupted candidates loose elections with probability 1.
 - The lobby is not willing to side contract if money is not very effective in swaying votes.
Proposition 2.

Laffont and Tirole (1993): whether or not the planner can commit to reimburse investment costs, the equilibrium can envision ex post expropriation of sunk investments, being the investment return partly extracted along with the informational rent.
Proposition 2.

- Laffont and Tirole (1993): whether or not the planner can commit to reimburse investment costs, the equilibrium can envision ex post expropriation of sunk investments, being the investment return partly extracted along with the informational rent.

- Lack of formal guarantee of productivity offsets typical of many incentive contracts (see Basheda et al., 2001): assume non-commitment–take aside the bargaining inefficiency.
Proposition 2.

- Laffont and Tirole (1993): whether or not the planner can commit to reimburse investment costs, the equilibrium can envision ex post expropriation of sunk investments, being the investment return partly extracted along with the informational rent.

- Lack of formal guarantee of productivity offsets typical of many incentive contracts (see Basheda et al., 2001): assume non commitment–take aside the bargaining inefficiency.

- **Result**: if, before learning β, the firm can commit a monetary investment increasing the ex ante probability of being a high type, in equilibrium the degree of under-investment is higher the more powerful is the incentive rule. Therefore, a benevolent planner should rise the power of the incentive rule the more relevant are investment concerns (see also Sappington, 1986).
Proposition 3: the Investment Game.

Suppose that:

1. the incentive rule is selected in stage 2 by the incumbent between two parties: the pro-shareholder R and the pro-consumer D.
Proposition 3: the Investment Game.

Suppose that:

1. the incentive rule is selected in stage 2 by the incumbent between two parties: the pro-shareholder R and the pro-consumer D.

2. Add to the usual timing two more steps: 6. An election with exogenous winning probability $x_m, (m = D, R)$ is held; and the winner can, exerting the costly effort ρ_m with $\rho_R > \rho_D > 1$, ease the firm’s private-funds-seeking activity; 7. the firm can commit to an investment with fixed monetary cost $\bar{I} \geq 0$ and stochastic return whose expected value is $\pi \equiv \bar{\pi} \delta + \bar{\pi} (1 - \delta) > 0$ with $\bar{\pi} > 0 > \pi$ and $\delta > 0$.
Proposition 3: the Investment Game.

Suppose that:

1. the incentive rule is selected in stage 2 by the incumbent between two parties: the pro-shareholder R and the pro-consumer D.

2. Add to the usual timing two more steps: 6. An election with exogenous winning probability x_m, $(m = D, R)$ is held; and the winner can, exerting the costly effort ρ_m with $\rho_R > \rho_D > 1$, ease the firm’s private-funds-seeking activity; 7. the firm can commit to an investment with fixed monetary cost $\bar{I} \geq 0$ and stochastic return whose expected value is $\pi \equiv \bar{\pi}\delta + \bar{\pi}(1 - \delta) > 0$ with $\bar{\pi} > 0 > \bar{\pi}$ and $\delta > 0$.

The firm is infinitively risk averse in the range of the ex-post negative utilities so that only the high type invest if:

$$\Phi \left(\bar{a}_{\bar{m}}^{S,F} \right) + \bar{\pi}\bar{I} \geq 0$$

where $\bar{m} = D, R$.
Proposition 3: Results.

- Each party evaluates the ex-post participation to the investment game constraint at both the common shadow price $o > 0$ and a specific investment concern χ_m—the party’s willingness to leave higher ex post rents to shareholders—with:

$$\chi_R \equiv 1 + o - \gamma < 1 + o + \gamma \equiv \chi_D, \quad \gamma > 0 \text{ and } \bar{x} < \lambda/\gamma$$
Proposition 3: Results.

- Each party evaluates the ex-post participation to the investment game constraint at both the common shadow price $o > 0$ and a specific investment concern χ_m—the party’s willingness to leave higher ex post rents to shareholders—with:

 $\chi_R \equiv 1 + o - \gamma < 1 + o + \gamma \equiv \chi_D, \quad \gamma > 0 \text{ and } \tilde{x} < \lambda / \gamma$

- Therefore, the incumbent maximizes:

 $\tilde{W}_m^{S,I} = \tilde{W}^S + (1 + o - \chi_m) \tilde{x} v [1 - \gamma (i, j)] \Phi \left(\tilde{a}_m^{S,I} \right)$
Proposition 3: Results.

- Each party evaluates the ex-post participation to the investment game constraint at both the common shadow price \(o > 0 \) and a specific investment concern \(\chi_m \)–the party’s willingness to leave higher ex post rents to shareholders–with:
 \[
 \chi_R \equiv 1 + o - \gamma < 1 + o + \gamma \equiv \chi_D, \quad \gamma > 0 \text{ and } \tilde{x} < \lambda / \gamma
 \]

- Therefore, the incumbent maximizes:
 \[
 \tilde{W}^S = \tilde{W}^S + (1 + o - \chi_m) \tilde{x} v [1 - \gamma (i, j)] \Phi \left(\tilde{a}^S_m \right)
 \]

- All in all, the equilibrium low type’s allocation is:
 \[
 \psi' \left(\tilde{a}^S_m \right) = \tilde{q}^S_m - \Gamma (v) [1 - \gamma (i, j)] \left[\frac{\lambda}{1 + \lambda} - \frac{1 + o - \chi_m}{1 + \lambda} \tilde{x} \right] \Phi' \left(\tilde{a}^S_m \right),
 \]
 which, in turn, implies Proposition 3.