Privacy, Publicity, and Choice*

Andrew F. Daughety
Jennifer F. Reinganum

Department of Economics
and Law School
Vanderbilt University
Nashville, TN 37235

andrew.f.daughety@vanderbilt.edu
jennifer.f.reinganum@vanderbilt.edu

May 2008
Last revised: November 2008

* We thank the Division of Humanities and Social Sciences, Caltech; the Berkeley Center for Law, Business and the Economy, Boalt Law School, the University of California, Berkeley; and NYU Law School for providing us with a supportive research environment during the writing of this paper. We thank audiences at the Georgetown Law Center; the Institut d’Anàlisi Econòmica, Barcelona; the Max Planck Institute for Research on Collective Goods, Bonn; the NBER Law and Economics Summer Institute 2008; and the University of Alberta for comments. We thank Rebecca Morton, Chris Snyder, Joel Sobel, Eric Talley, and Abraham Wickelgren for helpful conversations and suggestions.
Privacy, Publicity, and Choice

Andrew F. Daughety
Jennifer F. Reinganum

ABSTRACT

We develop and explore a new model of the economics of privacy. Previous work has focused on “privacy of type,” wherein an agent privately knows an immutable characteristic and the concern has been the protection of that private information. We consider “privacy of action,” wherein privacy means that an agent’s choice of action is unobservable to others. To show how a policy of privacy can be socially optimal, we assume that an agent derives utility from an action he takes, from the aggregate of all agents’ actions, and from other agents’ perceptions of the agent’s type (which are based on his action). If his action is observable, then he inflates it (relative to his full-information optimal action) so as to enhance the perceptions that others have of him. This contributes to aggregate welfare through increasing the public good, but the disutility associated with the change in agents’ actions is also a social cost. If his action is unobservable, then he can take his full-information optimal action and still be “pooled” with other types. When the disutility of signaling is high relative to the value of its contribution to the public good, a policy of privacy is optimal. We also consider a policy of waivable privacy, and find that equilibria exist in which some, but not all, types waive privacy. More significantly, if policies of privacy or publicity are costlessly enforceable, then a policy of waivable privacy is never socially preferred. Finally, we consider a number of examples (some of which involve a public bad and/or social disapproval): open-source software development; charitable giving; recycling; consumption of health services; DNA dragnets; student rankings; constraints on information disclosure at trial; electricity and water usage during periods of voluntary rationing; shaming of speeders; and the use of earmarks by Congress.
1. Introduction

In this paper we develop and explore a new model of the economics of privacy. In contrast with much of the previous work on the topic of privacy, the notion of privacy we explore is “privacy of action;” that is, we consider privacy as a limitation on the public observability of an individual agent’s choice of a level of a good or service to obtain, or of an action to take. We especially emphasize individual actions that may have public-good (or public-bad) implications and characterize conditions under which it is socially preferable to provide a policy of privacy. When actions are private, agents with different types (for example, different preferences over what they read, or how much they will contribute to a charity, or over the level of health services they want to consume) need not conform their actions to those of others in order to pool their types with those of others. Unlike the usual pooling notion in information-economics models, here unobservability of action means that pooling can occur even though different types choose their individual full-information levels of the action. This notion of privacy leads to conditions wherein it is individually and socially preferred to the alterative, which we refer to as “publicity,” where individual choice is influenced by social pressure because actions are publically observable. Alternatively put, we develop a model of a demand for privacy without assuming a direct preference (or taste) for privacy on the part of the individual agent. We further consider an intermediate policy of waivable privacy, wherein an agent may choose to make his actions observable. Despite the absence of an exogenous cost of disclosure, we obtain an equilibrium that involves limited waiver of privacy. Waivable privacy is never \textit{ex ante} optimal when it is costless to enforce a policy either of privacy or publicity. However, it turns out to be socially preferred to policies of either pure privacy or pure publicity when those pure policies are sufficiently costly to enforce, and many of the privacy policies in our society are of the waivable form (from the 5th Amendment’s right to silence to opt-outs from privacy restrictions in insurance policies). We provide an analysis of the \textit{ex ante} and \textit{interim} socially optimal choices of policy and discuss examples of the application of such policies to open-source software development; charitable giving; recycling; consumption of health services; DNA dragnets; student rankings; constraints on information disclosure at trial; electricity and water usage during periods of voluntary
rationing; shaming of speeders; and the use of earmarks by Congress.

The traditional notion of privacy in economics has centered around what might be called “privacy of type” wherein privacy rules are used to protect private information against direct observation.¹ There the basic idea is that individual agents have immutable characteristics which they might wish to hide (keep secret) when engaged in market transactions or social interactions. Thus, for example, a worker might wish to hide a characteristic that might affect his productivity when he negotiates with a prospective employer whose profitability would be adversely influenced by the characteristic involved (for example, the worker’s proclivity to use alcohol or drugs or his potential for contracting a debilitating disease which might be predictable via information on the worker’s DNA). This form of privacy derives from the standard notion of private information about type from information economics. The basic dilemma in such analyses is that either some or all of the types pool (which demands that all take the same action, thereby suffering a loss due to the requirement to conform to a common action) or some form of inefficient information transfer occurs, either because agents on the other side of the transaction engage in some type of costly screening of the privately informed agents, or because conditions obtain wherein distortionary signaling by the privately informed agents ensues.² In other words, private information in such a context has costs and (without positing a taste for privacy) seems³ to have no social benefits, thereby leading to the classical assertion that privacy protection is welfare-reducing in the economy. For example, Posner likens privacy protection to the

¹ For early contributions, see Posner (1978, 1981) and Stigler (1980). For an extensive list of recent work, and links to a number of recent papers, see the web site maintained by Acquisti: http://www.heinz.cmu.edu/~acquisti/economics-privacy.htm; accessed April 4, 2008.

² Disclosure might be possible if it can be achieved credibly and costlessly, but then private information as a notion is rather empty of significance. Costly disclosure means that only some types will bear the cost. In the analysis at hand, we assume that agents cannot costlessly and credibly disclose their types, though they can costlessly disclose their actions.

³ But see the discussion about price discrimination in Section 2 below.
The basic point I wish to assert is the symmetry between ‘selling’ oneself and selling a product. If fraud is bad in the latter context ... it is bad in the former context, and for the same reasons: it reduces the amount of information in the market, and hence the efficiency with which the market – whether the market for labor, or spouses, or friends – allocates resources.” (Posner, 1981, p. 406).

It is important to note that we do not assume that privacy of type is not an important and interesting topic. Clearly a number of laws (for example, concerning the release of information about DNA or blood tests) focus on such privacy. Rather, our point is that privacy of action is also a focus of policy and that such a form of privacy actually can effectively act to provide privacy of type. Indeed, privacy of action may be necessary to maintain privacy of type, since privacy of type alone (without privacy of action) can frequently lead to separating outcomes wherein type ends up being revealed, usually accompanied by distortionary behavior on the part of one or more agents.

As an example of privacy of action protection, information on individuals which is contained in governmental records is protected via various privacy laws. The Privacy Act of 1974 applies to a variety of federal agencies, and augments or primarily determines agency privacy protection policies. Passport records maintained by the U.S. Department of State, which include information on international travel by passport holders, are subject to Privacy Act restrictions; choice of where to travel is an action choice, not a personal characteristic. IRS records, which are also the subject of Privacy Act restrictions, contain information on sources of income (for example, what stocks were sold or jobs held) and on the disposition of wealth (for example, what charities received contributions). Neither sources of income nor distributions of wealth made are immutable characteristics of an individual – that is, they are not “types” drawn from a type-space; rather they are actions taken (that is, choices made within a set of available options). Thus, part of the purpose of this Act is to provide privacy of action when actions taken by an individual become part of a record kept by a federal agency.

4 “The basic point I wish to assert is the symmetry between ‘selling’ oneself and selling a product. If fraud is bad in the latter context ... it is bad in the former context, and for the same reasons: it reduces the amount of information in the market, and hence the efficiency with which the market – whether the market for labor, or spouses, or friends – allocates resources.” (Posner, 1981, p. 406).
Plan of the Paper

In Section 2 we provide a brief review of some of the recent papers on privacy and also some related work on conformity and on pro-social activity. Section 3 provides the basic analysis of pure policies of privacy of action or publicity (that is, openness) of action; here actions give rise to intrinsic utility and esteem (or future opportunities to trade), but they may also contribute to the provision of a public good (think of contributing to the local symphony). We characterize how a privacy or publicity policy affects \textit{ex ante} social welfare, and we show how there can be a substantial conflict between the policy that maximizes \textit{ex ante} expected social welfare and the policy that is \textit{interim}-preferred by the median type. In Section 4 we add the policy of waivable privacy and see that such a policy can be \textit{ex ante} preferred only if pure privacy or pure publicity are sufficiently costly to enforce. Section 5 provides a number of examples that illustrate our results while Section 6 provides a summary and suggestions for future research. An Appendix provides primary results and proofs, while a Technical Appendix5 provides supplementary results and proofs; we indicate which appendix contains what results as appropriate.

2. Related Literature

This paper is related to several strands of the economics literature, including the disclosure literature (in which an agent can reveal his type directly) and the signaling literature (in which an agent cannot reveal his type directly, but can reveal it indirectly through costly signaling).6 Like the signaling literature, we assume that an agent cannot credibly reveal his type directly, but can signal it if his action is publically observable. In a variation on the disclosure literature, we assume that an agent can costlessly disclose his \textbf{action} (rather than his type). In Section 5 we discuss several areas of application of our model; related

5 Available at: http://www.vanderbilt.edu/Econ/faculty/Daughety/PPCTechAppendix.pdf

6 Early papers on disclosure include Grossman (1981) and Milgrom (1981); an early paper on signaling is Spence (1973). Daughety and Reinganum (forthcoming-a) provide a discussion and unification of the disclosure and signaling models in the context of private information about product quality.
literature that is specific to these applications is discussed briefly in the context of the examples.

In terms of the agent’s payoff, our model is related to that of Benabou and Tirole (2006), who explore the effect of rewards on individuals’ pursuit of pro-social activity. In their model, an individual has an intrinsic utility from engaging in an activity; he also consumes the public good thereby created. In addition he receives monetary and reputational rewards. An agent’s type is two-dimensional (the degree of altruism and the degree of responsiveness to monetary rewards), but there is a single activity level to be chosen, leading to a “signal extraction” problem: does a higher level of activity mean that the agent is more altruistic or greedier? They demonstrate how the use of monetary rewards can undermine the value of engaging in the activity as a signal of altruism, and discuss the determination of optimal monetary rewards. The strength of reputational incentives depends upon a parameter that reflects the extent to which the agent’s action is observable. They show that the agents’ aggregate supply of the activity increases in this parameter.7

Our model and goals are different from those of Benabou and Tirole (2006) in several ways. The most significant difference is that our objective is to compare behavior and welfare (both interim and ex ante) under various privacy policies, including privacy, publicity, and waivable privacy. Our agents’ utility functions also include intrinsic utility from the action, utility from consuming the public good, monetary rewards or costs, and utility from the esteem of others. Since our interest is in the comparison of alternative privacy policies rather than the conflicting reputational concerns that result in rewards undermining participation, we assume that agents have private information only about their intrinsic utility, and not about their responsiveness to rewards. In this case, the agent’s action (if public) is a clear signal of his (single) type. We also consider anti-social activities, and those that have a mixed effect (for instance, an agent’s action may contribute to a public good, but result in an adverse reputational effect for that agent).8

7 Linardi and McConnell (2008) conduct an experiment based on Benabou and Tirole’s model and find that subjects do volunteer more time when their contributions are public than when they are private; however, they find that monetary incentives have little effect on the extent of volunteering.

8 Becker’s (1974) complete information model of social interactions includes intrinsic utility and a status motive for engaging in an activity. Bernheim’s (1994) incomplete information model of conformity
There are several previous papers that address the question of providing privacy protection, but in the context of market transactions between a buyer with private information and a sequence of sellers. Although the details of the models differ, they obtain similar results. Taylor (2004) considers a market wherein a buyer with private information buys sequentially from two sellers. The buyer's valuations for the two goods are correlated, so the information that the first seller obtains by screening the buyer would allow the second seller to engage in price discrimination. If buyers fully-anticipate the sale of their information, they modify their purchase behavior so as to reduce the extent of information that is revealed, thus undermining the first seller's direct profits as well as its profits from the sale of information. In this case, the first seller has an incentive to commit not to sell the information he obtains by screening the buyer. Acquisti and Varian (2005) analyze a related model wherein the first and second seller are the same firm. They provide conditions under which the firm would find it optimal to commit not to use the buyer's first-period purchase history in its second-period pricing decisions. Calzolari and Pavan (2006) use a principal-agent model wherein a buyer contracts sequentially with two sellers. Since the first contract may sort buyer types (and this information could be conveyed to the second seller), the first seller and the buyer must also contract over the extent of the buyer's privacy. They provide sufficient conditions on the preferences and correlations between the buyer's values for trade with each seller for the optimal first contract to involve privacy.

The related concept of norms is a popular topic in the law literature. McAdams (1997) notes that norms induce conformity by denying esteem to those who violate the norm; this is similar in notion to Bernheim’s (1994) discussion of conformity. McAdams further argues that privacy can make norms unenforceable by making violations of the norm undetectable. Thus when the norm is itself inefficient, privacy is beneficial. In our model, agents obtain an “average” esteem by conforming.

(respectively, disclosure). These papers address privacy of action in the sense that the buyer’s first-period action is rendered unobservable to the second seller when the first seller promises privacy; however, buyers are still engaged in a game of asymmetric information with the first seller (and with the second as well), so their decisions are still distorted away from their full-information optimal levels. By contrast, in our model a policy of privacy allows the agent to retain private information about his type while choosing his full-information optimal action.

We also address the issue of waivable privacy of action. In the context of privacy of type, Hermalin and Katz (2006) consider the effect of waivable privacy in a model wherein knowledge of a buyer’s type may allow the seller to price discriminate or, alternatively, may facilitate improved matching between buyers and sellers. They find that privacy rights must be mandated rather than waivable in order to have any effect. This latter result is due to their assumption that the agent, by waiving his right to privacy, reveals his type costlessly. This leads to complete “unraveling” because every agent type is induced to disclose his type in order not to be “pooled” with a collection of even worse types. By contrast, we consider a costlessly-waivable privacy of action. By waiving his right to privacy, the agent can reveal his action – but not his type – costlessly. Although waiving privacy of action is costless, this waiver itself results in a inflated choice of action through which type is revealed. Thus, there is an endogenously-determined cost associated with revealing type in our model and complete unraveling need not occur. Although mandated privacy may be more efficient than waivable privacy in our model, waivable privacy still has some effect in the sense that some types may invoke their (waivable) privacy rights in equilibrium. Moreover, if a policy of pure privacy (respectively, pure publicity) is sufficiently costly to enforce then waivable privacy can be more efficient.

3. Privacy versus Publicity Policies: Individual and Social Preferences

We initially formulate our model to address the possibility of actions that might generate public goods as well as personal esteem due to the perceptions of others; in a later section we will modify the model
Given the assumed quasilinearity of utility, we could allow each agent to have a possibly different income without affecting the results in most of the paper. Only in the case of charitable giving, wherein contributions are related to income (to be discussed in Section 5), would we further require that income be observable. We simplify the discussion and presentation of results by assuming all agents have the same income.

In what follows we model an agent’s utility as being comprised of three parts: 1) an intrinsic utility term reflecting consumption of a composite commodity and the action of interest; 2) an extrinsic utility term equal to the individual’s perceived benefit from a public good arising from the aggregate actions of all agents; and 3) an extrinsic utility term reflecting the esteem an individual is accorded by others.

3.1 Model Setup

There is a continuum of agents of mass M, each with income denoted I. Agent i’s utility over the consumption of a composite good c_i and an action g_i is assumed to be quasilinear in the composite consumption good; thus any income not spent on g_i is devoted to c_i. Let \(\theta_i \) denote agent i’s type; we will assume that \(\theta_i \in [0, \bar{\theta}] \) for all i where \(\bar{\theta} \) is finite. Furthermore, assume that each agent observes his type privately, but it is common knowledge that each agent’s type is an i.i.d. draw from a commonly known distribution, H, with support \([0, \bar{\theta}]\) and a strictly positive and continuous density \(h \) on that support. We assume that the agent’s intrinsic utility of the action (that is, the agent’s utility divorced from any public goods and esteem effects as well as any associated costs) is quadratic in the level of the action, \(g_i \), and in the type, \(\theta_i \); thus, the intrinsic utility of the action is given by \(\gamma g_i - (g_i - \theta_i)^2/2 \), with \(\gamma > 0 \). The marginal intrinsic utility is \(\gamma - g_i + \theta_i \), which is diminishing in the level of the action but increasing in type, so that higher types have
higher intrinsically-optimal actions. We have chosen this particular form of the intrinsic utility so as to provide a sufficiently simple and manipulable model when we allow for incomplete information; in certain of the examples below in Section 5, we will modify the model slightly and indicate the effects of the modification on the results we obtain in this section.

Each agent’s action will be a function only of his own (privately observed) type, since agents make simultaneous choices; that is, a strategy for each agent maps his type into the non-negative real line. Since the agents are identical (except for their privately-observed types), from any agent i’s point of view, the aggregate of all agents’ actions is given by $G = \int E_j(g(\theta_j))dj = M\theta(g(\theta))$, where $g(\theta)$ is agent i’s conjecture of the action of every other agent as a function of that agent’s realized type. Since agent i is of measure zero, his contribution to the aggregate is negligible and his optimal action does not depend upon others’ choices. The value of the public good to agent i is given by αG; the non-negative parameter α represents the marginal utility of the public good.

We further assume that overall utility also depends upon the esteem (social approval) in which agent i is held by others; note that esteem might be a personal consumption value, or it might reflect continuation values from future trading opportunities. We assume that esteem is increasing in the agent’s perceived type, denoted $\tilde{\theta}_i$, and we specifically model this term as $\beta \tilde{\theta}_i$, with β a positive parameter. If the action is unobservable, then $\tilde{\theta}_i$ equals the mean type of those whose actions would be unobservable (either due to a policy or a choice). If actions are observable, then others will try to infer agent i’s type from his action.

Therefore, any inferences about an agent’s type are assumed to depend only on that agent’s action. Fudenberg and Tirole refer to this as “no signaling what you don’t know” (1991, pp. 332-3).

In Section 5 we allow α to be negative, so as to consider public bads; we also allow β to be negative so as to consider social disapproval. The details of the analysis for $\beta < 0$ are in the Appendix. In the conclusion we briefly discuss the implications of making this term nonlinear in θ_i.

Notice that, in this formulation, every type receives positive esteem. Alternatively, one might formulate this utility term as $\beta(\tilde{\theta}_i - \mu)$, where μ is the mean type. In this case, perceived types below the mean receive negative esteem while perceived types above the mean receive positive esteem. This turns out to have no effect on our results since it simply subtracts a constant, $\beta\mu$, from every type’s payoff.
Since c_i is the numeraire good, we take its price to be 1; the price of the action, g_i, is denoted as p, so that agent i’s budget constraint is $c_i + pg_i = I$.\footnote{We assume that p is independent of the aggregate amount of activity and the agent’s type; we will briefly discuss the effect of making p a function of either of these in Section 6.} For example, if the action involves giving money to a cause, then p may reflect anticipated administrative costs (and would be greater than 1), while if the action involves a physical activity (e.g., volunteering, reading books, recycling) then p would be the cost of the activity (respectively, lost wages, cost of reading materials, direct costs plus the time value of money spent in recycling activity). Finally, given the quasilinearity assumption, we assume that I is large enough to assure that a positive amount of the composite commodity c_i is consumed by each agent i; this thereby assures us that the demand for the action g_i is independent of the agent’s income level.

Thus, our model of agent i’s choice problem, after substituting for the numeraire composite consumption good and employing the functional forms described above, entails the agent choosing the level of the action of interest (g_i) so as to maximize overall utility, denoted as $V_i(g_i, \theta_i, \tilde{\theta}_i, G)$, under the specified rule of privacy (that is, complete privacy, complete publicity, or waivable privacy), where:

$$V_i(g_i, \theta_i, \tilde{\theta}_i, G) = \gamma g_i - (g_i - \theta_i)^2/2 + \alpha G + \beta \tilde{\theta}_i + I - pg_i.$$ \hspace{1cm} (1)

In what follows, we will contrast agent i’s equilibrium choice of g_i under the assumption that it is private (that is, unobservable to other agents) versus public (that is, observable to other agents). Note that, with a continuum of agents, no inference can be drawn about any other agent’s action based solely on observing the total amount of the public good.

3.2 Privacy of Action

First, assume that the society of agents operates under a policy of privacy of action, so that each agent’s perceived type is the average of the group, $\mu = \int_A \theta h(\theta) d\theta$, where $A = [0, \tilde{\theta}]$; we use a superscript “P” to denote the actions under this regime. Next, since V_i is quasilinear (and thus the optimal action is independent of agent i’s income) and the term G is a constant from agent i’s perspective, the optimal action function is symmetric over all agents: agent i’s problem is to pick an action function (that is, a type-
dependent strategy), denoted as \(g^p(\theta_i) \), which maximizes \(V_i(g_i, \theta_i, \mu, G) \), which again reflects the symmetry of the agents. Since \(V_i \) is strictly concave in \(g_i \), the optimal solution for agent \(i \) is \(g^p(\theta_i) = \gamma - p + \theta_i \). In order to simplify the notation, let \(g_{\min} = \gamma - p \), and assume that \(\gamma > p \). Thus, agent \(i \)’s equilibrium level of action under a policy of privacy is:

\[
g^p(\theta_i) = g_{\min} + \theta_i \text{ for all } \theta_i \in [0, \bar{\theta}]. \tag{2}
\]

That is, the agent will choose a positive amount of the action, and that amount is increasing in type. Finally, note that the agent’s optimal value function, \(V_i(g^p(\theta_i), \theta_i, \mu, G) \), is readily shown to be increasing in \(\theta_i \).

Notice that in this equilibrium, while the types are pooled in the usual sense that no observer can infer which type characterizes any particular individual (that is, there is insufficient information to identify the type of any agent), the lack of observability of the actions means that, unlike the usual pooling equilibrium, the different types do not need to take the same action in order to pool: privacy of action is sufficient to allow pooling of types without constraining the actual choice of the level of the action itself. This fundamentally distinguishes privacy of action (wherein an agent’s choice of \(g \) is not itself observable) from privacy of type (wherein an agent’s type is not observable, but could be inferred from observable behavior).

3.3 Publicity of Action

Consider the same society, but now operating under a policy of publicity (or, for notational convenience, “O” for “openness”). In what follows we will characterize a separating equilibrium;\(^{16}\) publicity assures that actions are observable while separation assures that each action allows inference of the type that would take that action in equilibrium. Since agents are identical in all observable aspects, beliefs about which type will have chosen any particular observed action are assumed to be the same for all agents. Let \(B(g) \) be the belief function that relates an agent’s choice of observable action level to his perceived type; thus, if agent

\(^{16}\) We focus on the separating equilibrium because it is selected by the belief-based refinement D1 (see Cho and Kreps, 1987, and Ramey, 1996). However, an analysis based on pooling equilibria is conjectured to have similar results regarding preferences over policies because in both the separating and pooling equilibria, types do not choose their full-information optimal actions, and thus there is a utility loss associated with public actions.
i chooses action level g_i (and this level is publically observable), then he is inferred to have type $B(g_i) \in [0, \bar{\theta}]$. Given openness, agent i choosing observable action level g_i with true type θ_i and perceived type $\tilde{\theta}_i = B(g_i)$ obtains utility $V_i(g_i, \theta_i, B(g_i), G)$. As observed earlier, simultaneous choice by all agents means that agent i’s strategy is a function of his type alone, as there is no strategic interaction among the agents’ actions. While G contains conjectures about the (expected) actions of the other agents, this term is merely a constant in agent i’s objective function. Thus, the symmetric separating perfect Bayesian equilibrium can be found by analyzing an individual agent’s incentive compatibility conditions. In addition to incentive compatibility constraints that ensure separation, a separating equilibrium requires that observing agents infer correctly the acting agent’s type from his publically observable action; that is, the beliefs must be consistent with equilibrium play. This is formalized in the following definition.

Definition 1. A symmetric separating perfect Bayesian equilibrium consists of the action function, $g^O(\bullet)$, and beliefs, $B^O(\bullet)$, such that for all agents and for all $\theta_i \in [0, \bar{\theta}]$:

(a) $V_i(g^O(\theta_i), \theta_i, \theta_i, G) \geq \max_g V_i(g, \theta_i, B^O(g), G)$ \hspace{1cm} (IC)

(b) $B^O(g^O(\theta_i)) = \theta_i$. \hspace{1cm} (Consistency)

The structure of the payoff function allows us to apply Mailath’s (1987) conditions that guarantee and characterize a unique separating equilibrium outcome. Moreover, our model also satisfies Ramey’s (1996) conditions for applying the refinement D1 to a continuum-type signaling game, implying that this separating equilibrium outcome is the unique D1-refined equilibrium outcome.

17 Since $\beta > 0$, type $\theta = 0$ is the “weakest” type so that this type need not alter its action to be identified, leading to the boundary condition $g^O(0) = g^p(0)$. When $\bar{\theta}$ is the weakest type (this occurs for $\beta < 0$; see Section 5), then that type need not alter its action in equilibrium and the boundary condition becomes $g^O(\bar{\theta}) = g^p(\bar{\theta})$.
Proposition 1. The Unique (Refined) Symmetric Equilibrium Outcome under a Policy of Publicity.

(a) There is a unique (refined) symmetric perfect Bayesian equilibrium outcome with agent i’s equilibrium choice of action function, \(g^O(\theta_i) \), and common agent beliefs, \(B^O(g) \), defined as follows.

i) \(g^O(\theta_i) \) is the increasing solution to the equation:

\[
g^O(\theta_i) = g_{\text{min}} + \theta_i + \beta(1 - \exp\left[- \frac{(g^O(\theta_i) - g_{\text{min}})}{\beta} \right]) \quad \text{for all } \theta_i \in [0, \bar{\theta}].
\]

ii) This equilibrium is supported by the beliefs \(B^O(g) \) given by:

\[
B^O(g) = g - g_{\text{min}} - \beta(1 - \exp\left[- \frac{(g - g_{\text{min}})}{\beta} \right])
\]

for \(g \in [g_{\text{min}}, g^O(\bar{\theta})] \), with out-of-equilibrium beliefs:

\[
B^O(g) = 0 \quad \text{for } g < g_{\text{min}}, \quad \text{and } B^O(g) = \bar{\theta} \quad \text{for } g > g^O(\bar{\theta}).
\]

(b) \(g^O(0) = g^P(0) \) and \(g^O(\theta_i) > g^P(\theta_i) \) for all \(\theta_i > 0 \).

(c) \(G^O \) in the publicity equilibrium strictly exceeds \(G^P \) in the privacy equilibrium: \(G^O > G^P \).

Part (a) follows from Mailath (1987) and Ramey (1996); we provide a brief sketch of the proofs for parts (b) and (c) below. The signaling effect is \(g^O(\theta_i) - g^P(\theta_i) \); to understand this effect, let us examine the following implicit relationship for \(g \):

\[
g = g_{\text{min}} + \theta_i + \beta(1 - \exp\left[- (g - g_{\text{min}})/\beta \right]). \tag{3}
\]

Solutions to this implicit expression for \(g \) will be the solutions, for given \(\theta_i \), for \(g^O(\theta_i) \). For all \(\beta > 0 \) and for all \(\alpha \geq 0 \), we can illustrate the solution to equation (3) as the intersection of the 45°-line with the curve described by the right-hand-side of equation (3); this is done in Figure 1, where the origin is at \((g_{\text{min}}, g_{\text{min}})\).

Note that, for a given agent \(i \) and for a given type of that agent \(\theta_i > 0 \), the curve described by the right-hand-side of equation (3) intersects the vertical axis at \(g_{\text{min}} + \theta_i \), which is the privacy action choice, \(g^P(\theta_i) \), as indicated on the horizontal axis. Since the third term on the right-hand-side of equation (3) is increasing and concave in \(g \), the right-hand-side of equation (3) cuts the 45°-line at a point that implies that \(g^O(\theta_i) > g^P(\theta_i) \): under a policy of publicity each agent chooses a higher level of the action (so as to signal
type) than he would under a policy of privacy. Notice, this means that G under a policy of publicity obtains a value that exceeds its value under privacy: publicity leads to a higher level of the public good.

A second informative illustration of the relationship between $g^o(\theta_i)$ and $g^p(\theta_i)$ is shown in Figure 2, which graphs each of the action strategies with respect to θ_i. The lower, linear function is $g^p(\theta_i)$ using equation (2) above; note that the slope of this line is one and the intercept is g_{min}. The function $g^o(\theta_i)$ is increasing and concave; it starts at the same intercept and lies everywhere above the $g^p(\theta_i)$-line. Moreover,
the slope of \(g^O(\theta_i) \) is greater than one.\(^{18}\) Therefore the vertical distance between \(g^O(\theta_i) \) and \(g^P(\theta_i) \) is increasing as \(\theta_i \) increases, indicating that (under a policy of publicity) higher types must inflate more in order to separate from lower types who would otherwise be tempted to mimic the higher types so as to garner an increase in esteem. That is, the “action differential due to signaling,”

\[
\delta(\theta_i; \beta) = g^O(\theta_i) - g^P(\theta_i) = \beta(1 - \exp[-(g^O(\theta_i) - g_{\min})/\beta])
\]

is increasing in \(\theta_i \).

Again, due to the envelope theorem, agent \(i \)’s optimal value function, \(V_i(g^O(\theta_i), \theta_i, B^O(g^O(\theta_i)), G^O) \) is readily shown to be increasing in \(\theta_i \). It is clear that neither \(g^O \) nor \(\delta \) depend upon \(\alpha \). With a little more work, one can show that \(\partial g^O(\theta_i)/\partial \gamma = 1 \), \(\partial g^O(\theta_i)/\partial p = -1 \), and \(\partial g^O(\theta_i)/\partial \beta > 0 \). Finally, for future use, we note that the action differential \(\delta(\theta_i; \beta) \) is independent of \(\gamma \) and \(p \), and increasing in \(\beta \); that is, an increase in the importance to the agent of esteem results in an increased action differential in order to signal type.

3.4 Ex Ante Comparisons of Privacy and Publicity

From an \textit{ex ante} perspective, the decision by a social planner as to which policy, P or O, to choose depends upon an interesting trade-off that involves the importance of the public good, \(\alpha \), and the disutility from the action differential \(\delta(\theta_i; \beta) \). To be more precise, we define the \textit{ex ante} expected social payoff from a policy of publicity for a representative agent \(i \), denoted as \(W^O \), as \(E_\theta[V_i(g^O(\theta_i), \theta_i, B^O(g^O(\theta_i)), G^O)] \), where the expectation is taken over the possible types of the representative agent and \(G^O \) is the aggregate level of the public good provided by all agents when operating under a policy of publicity. Thus:

\[
W^O = \gamma E_\theta(g^O(\theta)) - (1/2)E_\theta((g^O(\theta) - 0)^2) + \alpha ME_\theta(g^O(\theta)) + \beta \mu + I - pE_\theta(g^O(\theta))
\]

\[
= (g_{\min} + \alpha M)E_\theta(g^O(\theta)) - (1/2)E_\theta((g_{\min} + \delta(\theta; \beta))^2) + \beta \mu + I.
\]

Similarly, we define the \textit{ex ante} expected social payoff from a policy of privacy for a representative agent \(i \), denoted as \(W^P \), as \(E_\theta[V_i(g^P(\theta_i), \theta_i, \mu, G^P)] \), where \(G^P \) is the aggregate level of the public good provided by all agents when operating under a policy of privacy. Thus:

\(^{18}\) This and other comparative statics results are proved in the Technical Appendix.
If an agent’s continuation value were a more general function of his own or all agents’ types (such as might occur in, say, assortative matching), then there might be an additional social value (resp., loss) associated with revelation of agents’ types and, hence, with publicity. This would increase (resp., decrease) the range of parameters for which publicity is an \textit{ex ante} optimal policy, but the essential tradeoff identified in this paper would remain. We briefly discuss the implications of such nonlinearity in Section 6 below.

In this paper we vary α and β independently so as to consider all possible combinations, but one could imagine situations in which β is an increasing function of α (contributing to a more important public good garners greater esteem for a given type). Assuming that $\beta(0) > 0$, a policy of privacy is still preferred for sufficiently low α. If $\beta'(\alpha)$ is sufficiently small, then there is still a unique value of α beyond which a policy of publicity is preferred. If $\beta'(\alpha)$ is sufficiently large, then privacy may always be the optimal policy or there may exist multiple disconnected sets of α-values for which privacy is optimal.

The question for the social planner concerns the difference between W^p and W^o. Let us denote this difference as Φ^{po}, which is expressed as a function of α, since that parameter will be a continuing focus of our analysis in this section. That is, let $\Phi^{po}(\alpha) = W^p - W^o$. It is straightforward to show that:

$$\Phi^{po}(\alpha) = (1/2)E(\delta^2) - \alpha ME(\delta),$$

where, for readability and notational convenience, we let $E(\delta^2)$ denote $E_\theta((\delta(\theta; \beta))^2)$, the second moment of $\delta(\theta; \beta)$, and let $E(\delta)$ denote $E_\theta(\delta(\theta; \beta))$, the first moment of $\delta(\theta; \beta)$. Notice that, under either policy, each agent’s \textit{ex ante} expected esteem is $\beta \mu$ and therefore this term does not appear in $\Phi^{po}(\alpha)$.\footnote{If an agent’s continuation value were a more general function of his own or all agents’ types (such as might occur in, say, assortative matching), then there might be an additional social value (resp., loss) associated with revelation of agents’ types and, hence, with publicity. This would increase (resp., decrease) the range of parameters for which publicity is an \textit{ex ante} optimal policy, but the essential tradeoff identified in this paper would remain. We briefly discuss the implications of such nonlinearity in Section 6 below.}

The sign of the right-hand-side of equation (4) is influenced by two factors: 1) the marginal utility of the public good, α; and 2) the distribution of $\delta(\theta; \beta)$, which is in turn influenced by the distribution of θ, H, and by the esteem parameter, β. First, since $\Phi^{po}(\alpha)$ is linear and decreasing in α (and clearly, $\Phi^{po}(0) > 0$), it is greater than, equal to, or less than zero as the marginal utility of the public good, α, is less than, equal to, or greater than $E(\delta^2)/[2ME(\delta)]$. Let $\alpha^{po} = E(\delta^2)/[2ME(\delta)]$ denote the value of α that yields social indifference between P and O.\footnote{In this paper we vary α and β independently so as to consider all possible combinations, but one could imagine situations in which β is an increasing function of α (contributing to a more important public good garners greater esteem for a given type). Assuming that $\beta(0) > 0$, a policy of privacy is still preferred for sufficiently low α. If $\beta'(\alpha)$ is sufficiently small, then there is still a unique value of α beyond which a policy of publicity is preferred. If $\beta'(\alpha)$ is sufficiently large, then privacy may always be the optimal policy or there may exist multiple disconnected sets of α-values for which privacy is optimal.}

In other words, for values of $\alpha < \alpha^{po}$, privacy is socially preferred to publicity; this is because the effects of publicity create greater disutility than the added utility from the increased provision of the public good. On the other hand, if $\alpha > \alpha^{po}$, publicity is socially preferred to privacy; now the individual valuation of the public good is sufficiently high that each individual would prefer to bear the expected disutility from publicity, since it will be imposed simultaneously on all other agents and
will lead to a sufficiently greater provision of the public good: misery loves company if it contributes to an important public good. In other words, unless the public good is of sufficient importance to the agents, the \textit{ex ante} preferred policy is privacy even though there is a public-goods aspect to the actions by the agents. This reflects the costly effects on the agents of the action differential induced by the esteem term.\footnote{As discussed in Section 5, this also happens if both α and β are negative (that is, a public bad that involves social disapproval); if the magnitude of α is not very large, privacy will still be preferred.} The foregoing is summarized in the next proposition.

\textbf{Proposition 2.} \textit{Ex Ante} Desirability of Privacy or Publicity.

Publicity is \textit{ex ante} socially preferred to privacy if and only if α is sufficiently large; that is, if and only if $\alpha > \alpha^{po}$.

Second, now consider the distribution of possible δ-values, denoted as H^{δ}, which is induced by the distribution of θ-values, H, and the equilibrium action function, $g^{po}(\theta)$. A simple re-arrangement of equation (4) reveals that a mean-preserving spread of H^{δ} results in an increased social preference for privacy. To see this, observe that equation (4) can be written as:

$$\Phi^{po}(\alpha) = (1/2)[E(\delta^{2}) - (E(\delta))^{2}] + E(\delta)[E(\delta)/2 - \alpha M].$$

A mean-preserving spread in the distribution of $\delta(\theta; \beta)$ results in an increase in the first term in brackets (which is the variance of $\delta(\theta; \beta)$) and no change in the second term in brackets (for given α). Thus, after a mean-preserving spread is applied to H^{δ}, α^{po} must increase to make $\Phi^{po}(\alpha^{po})$ again equal to zero. Our formal result is as follows.

\textbf{Proposition 3.} The Effect of a Mean-Preserving Spread of H^{δ}.

A mean-preserving spread of H^{δ} increases α^{po}, increasing the set of α-values for which privacy is \textit{ex ante} socially preferred.
Unfortunately, the complexity of the form of \(\delta(\theta; \beta) \) has precluded any general characterization of what changes in \(H \) create a mean-preserving spread of \(H^\delta \); however, the discussion below on the effects of \(\beta \) on \(\delta(\theta; \beta) \) is at least suggestive of the relationship between the two distributions.

In the Technical Appendix we show that if \(\beta' > \beta \), then \(H^\delta(\delta; \beta') \) first-order stochastic dominates \(H^\delta(\delta; \beta) \), so that increases in \(\beta \) (the marginal utility of esteem) increase the expectation of any increasing function of \(\delta \); two such expectations are \(E(\delta^2) \) and \(E(\delta) \). Therefore, since \(\alpha^{PO} \) is proportional to \(E(\delta^2)/E(\delta) \), the parameter \(\beta \) will potentially affect \(\alpha^{PO} \). While we have not been successful in finding a theoretical characterization of the effect of \(\beta \) on \(\alpha^{PO} \), we have used computational techniques as follows.\(^{22}\) First, under the assumption that \(H \) is the uniform distribution, we have computed the necessary and sufficient condition for \(\partial(E(\delta^2)/E(\delta))/\partial \beta \) to be positive (and therefore, for \(\partial \alpha^{PO}/\partial \beta > 0 \)) for a broad range of positive values of \(\beta \) and found the condition to be satisfied.

Second, we have computed \(E(\delta^2)/E(\delta) \) for a few alternative (but reasonably representative) values of \(\beta \) and for four different distributions on \([0, 1]\); see the Appendix for details. The computations suggest that, for a given density, increasing \(\beta \) shifts \(\Phi^{PO}(\alpha) \) up, thus increasing \(\alpha^{PO} \); that is, a larger set of \(\alpha \)-values are associated with privacy as the \(\text{ex ante} \) socially preferred policy. Moreover, the computations are consistent with the conjecture that a shift in the distribution \(H \) of \(\theta \)-values to a new distribution \(H' \), where \(H' \) first-order stochastic dominates \(H \), results in higher values of \(\alpha^{PO} \) as well.\(^{23}\) Alternatively put, for fixed \(\alpha \), a group with a greater expected preponderance of high-\(\theta \) members is more likely, \(\text{ex ante} \), to prefer privacy over publicity as a policy, than would a reference group with a lower expected preponderance of high-\(\theta \)-members. This makes sense since publicity is costly to engage in (due to the incentive it provides to inflate action) and common knowledge that realized types are more likely to be high-\(\theta \) substitutes for the need for individuals

\(^{22}\) The calculations were produced using Mathematica 6; the notebook used is available from the authors upon request.

\(^{23}\) However, the table in the Appendix also suggests that no such nice generalization to mean-preserving spreads of \(H \) will be possible, as revealed by the results for the Uniform and Middle Triangle Densities.
to inflate their actions so as to distinguish themselves from lower types. We summarize the computational results below.

Remark 1. Parametric Influences on the *Ex Ante* Social Desirability of Privacy.

Computational experience supports the notion that increases in β, or first-order stochastic dominance-generating shifts in H, will increase the range of α-values such that privacy is *ex ante* socially preferred to publicity.

3.5 Interim Comparisons of Privacy and Publicity

We now compare *interim* utility payoffs for each individual (that is, type-specific payoffs) under a policy of privacy versus a policy of publicity. Our primary result will be that, whatever is the *ex ante* policy adopted, reasonable conditions exist such that the median type will *interim*-prefer the opposite policy; this will then lead to the next section on a mixture of privacy and publicity, namely waivable privacy.

Interim policy preferences for an agent of type θ_i are summarized via the agent’s net value of a policy of privacy compared with a policy of publicity; we denote this net value as $\Gamma^\text{PO}(\theta_i, \alpha)$, for $\theta_i \in [0, \bar{\theta}]$, where:

$$\Gamma^\text{PO}(\theta_i, \alpha) = V_i(g^\text{P}(\theta), \theta, \mu, G^\text{P}) - V_i(g^\text{O}(\theta), \theta, \theta, G^\text{O}).$$

(5)

Thus type θ_i strictly *interim*-prefers a policy of privacy to a policy of publicity if and only if $\Gamma^\text{PO}(\theta_i, \alpha) > 0$.

Substituting the action functions $g^\text{P}(\theta)$ and $g^\text{O}(\theta)$ into equation (5) and simplifying yields:

$$\Gamma^\text{PO}(\theta_i, \alpha) = \beta(\mu - \theta_i) + (\delta(\theta_i; \beta))^2/2 - \alpha ME(\delta).$$

(6)

The first term on the right-hand-side is positive or negative depending upon whether θ_i is less than or greater than μ; the second term (the numerator of which is the signaling action differential squared) is strictly positive when θ_i is positive. Finally, as before, the term $\alpha ME(\delta)$ is the individual’s gain in utility from the public good if all other agents’ actions are public rather than private. It is straightforward to show that $\Gamma^\text{PO}(\theta_i, \alpha)$ is monotonically decreasing in θ_i.
Taking expectations of both sides of equation (6), we get that \(E(\Gamma^{P\theta}(\theta, \alpha)) = \Phi^{P\theta}(\alpha) \). This allows us to partition the possible \(\alpha \)-values into three intervals which correspond to whether or not interim preferences reinforce, or potentially conflict with, \textit{ex ante} social choices between the pure privacy and pure publicity policies. Let \(\tilde{\alpha}^{P\theta} \) be defined by \(\Gamma^{P\theta}(0, \tilde{\alpha}^{P\theta}) = 0 \); \(\tilde{\alpha}^{P\theta} \) is clearly positive. Furthermore, if \(\mu \leq \tilde{\theta} - (\delta(\tilde{\theta}; \beta))^2/2 \), then let \(\check{\alpha}^{P\theta} \) be defined by \(\Gamma^{P\theta}(\check{\theta}, \check{\alpha}^{P\theta}) = 0 \); \(\check{\alpha}^{P\theta} \) is non-negative. If \(\mu < \tilde{\theta} - (\delta(\tilde{\theta}; \beta))^2/2 \), then such a value does not exist, so for convenience in the Proposition, define \(\check{\alpha}^{P\theta} \) as zero. This interim preference for privacy is summarized in the following proposition (details of the interim preferences and of the parameters in Proposition 4 are provided in the Technical Appendix).

Proposition 4. Marginal Utility of the Public Good and the \textit{Interim} Preference for Privacy.

(a) If \(\mu \geq \tilde{\theta} - (\delta(\tilde{\theta}; \beta))^2/2 \), then \(0 \leq \check{\alpha}^{P\theta} < \check{\alpha}^{P\theta} \), and:

(i) all types interim prefer P to O for any \(\alpha \leq \check{\alpha}^{P\theta} \);

(ii) all types interim prefer O to P for any \(\alpha \geq \check{\alpha}^{P\theta} \);

(iii) lower types prefer P to O and higher types prefer O to P when \(\alpha \in (\check{\alpha}^{P\theta}, \check{\alpha}^{P\theta}) \).

(b) If \(\mu < \tilde{\theta} - (\delta(\tilde{\theta}; \beta))^2/2 \), then:

(i) not all types interim prefer P to O for any \(\alpha \geq 0 \);

(ii) all types interim prefer O to P for any \(\alpha \geq \check{\alpha}^{P\theta} \);

(iii) lower types prefer P to O and higher types prefer O to P when \(\alpha \in [0, \check{\alpha}^{P\theta}) \).

(c) Furthermore, the \(\alpha \)-value such that society is \textit{ex ante} indifferent between P and O, \(\alpha^{P\theta} \), is always in this interval: \(\alpha^{P\theta} \in (\check{\alpha}^{P\theta}, \check{\alpha}^{P\theta}) \). Therefore, for \(\alpha \)-values in this interval there is always a conflict between \textit{ex ante} and interim preferences over privacy and publicity.

In fact, it is possible for the median type to (interim) prefer the policy opposite to whichever policy maximizes the \textit{ex ante} social payoff. To see this contrast in a case wherein O is \textit{ex ante} preferred but P is
interim preferred by the median type, let \(\theta^{\text{PO}}(\alpha) \) be the marginal type such that \(\Gamma^{\text{PO}}(\theta^{\text{PO}}(\alpha), \alpha) = 0 \), for \(\alpha \geq 0 \). Note that \(\theta^{\text{PO}}(\alpha) \) is decreasing in \(\alpha \), and that \(\theta^{\text{PO}}(0) > \mu \), the mean (and median) type if \(H \) is symmetric. Thus, there is an \(\alpha^* \) such that \(\theta^{\text{PO}}(\alpha^*) = \mu \). It is straightforward to show that \(\alpha^* \in (\alpha^{\text{PO}}, \alpha^{\text{G}}) \), so that for any value of \(\alpha \) in the interval \((\alpha^{\text{PO}}, \alpha^*) \), the ex ante social payoff-maximizing choice of policy is O, but on an interim basis, the median type would prefer P to O.

To see how the reverse conflict can occur, assume that \(\alpha = 0 \). Since \(\alpha^{\text{PO}} > 0 \), this means that society ex ante prefers P to O. Since \(\theta^{\text{PO}}(0) > \mu \), then any density \(h \) which has a median to the right of \(\theta^{\text{PO}}(0) \) implies that the median type prefers O to P. This is because signaling type to gain esteem is sufficiently valuable to the median type (but is irrelevant in the case of the ex ante decision) for those types to interim prefer O to P. This conflict between the ex ante and interim settings is summarized below.

Remark 2. Conflicting Ex Ante and Interim Preferences over Policies.

- **H symmetric:** There are values of \(\alpha \) such that while a policy of publicity is ex ante socially preferred, the alternative policy of privacy is interim-preferred by the median type.

- **H sufficiently right-skewed:** There are values of \(\alpha \) such that while a policy of privacy is ex ante socially preferred, the alternative policy of publicity is interim-preferred by the median type.

4. Waivable Privacy

If it is costly to enforce compliance with policies of pure privacy or pure publicity, the foregoing discussion demonstrating the possibility of conflict between ex ante and interim decisions as to which policy to implement suggests that we consider a third possible policy, wherein privacy is waivable. That is, we assume that privacy is not enforced per se, and that any type who desires to publicize his action choice may elect to do so and does not incur any direct cost of making such a disclosure.

Without a cost of disclosure, one might expect that all types would disclose, in keeping with the
unraveling result developed in the literature on disclosure (see the discussion in Section 2 above). That is, one might readily expect that some form of unraveling would occur in equilibrium, so that all types disclose (choose “O”) since otherwise a type that does not disclose will be perceived to be worse than his true type. However, as we show, this need not occur: an equilibrium wherein some types choose privacy and some types choose publicity can exist. This is because choosing to waive privacy means making one’s action choice observable, and the optimal public action is higher due to the social judgment that affects esteem. This, in turn, means that there is an endogenously-determined cost of disclosing type which can imply the existence of an interior marginal type who is indifferent between keeping his action private or making it public. Thus, under waivable privacy an equilibrium wherein only some types waive privacy (and others do not) can exist; in this sub-section we characterize such an equilibrium and then compare it with the pure policies discussed earlier.

4.1 Extension of the Model and the Waivable Privacy Equilibrium

As before, let the two type-dependent strategies under the two policy regimes of privacy and publicity be denoted as \(g^p(\theta) \) and \(g^o(\theta) \), respectively. We will analyze the problem from agent i’s point of view. Consider an arbitrary strategy for all other agents that results in an aggregate level of the public good of \(\hat{G} \) and arbitrary beliefs following non-disclosure of \(\hat{\mu} \). Moreover, suppose that all agents maintain the beliefs \(B^o(g) \) if the agent chooses O and takes observable action g. Then it is clear that agent i’s payoff under P, \(V_i(g, \theta_i, \hat{\mu}, \hat{G}) \), is maximized at \(g^p(\theta_i) \) while agent i’s payoff under O, \(V_i(g, \theta_i, B^o(g), \hat{G}) \), is maximized at \(g^o(\theta_i) \), since \(\mu \) and \(\hat{G} \) do not affect the optimal solutions. The net value of privacy over publicity for agent i of type \(\theta_i \) is given by:

\[
V_i(g^p(\theta_i), \theta_i, \hat{\mu}, \hat{G}) - V_i(g^o(\theta_i), \theta_i, B^o(g^o(\theta_i)), \hat{G}).
\]

It is straightforward to show that the derivative of this net value with respect to \(\theta_i \) is \(g^p(\theta_i) - g^o(\theta_i) < 0 \) for \(\theta_i > 0 \). Thus, lower values of \(\theta_i \) are associated with higher net values of privacy, regardless of the form of other agents’ strategies or the beliefs following non-disclosure.
that is, the conditional mean,
\[\mu(\theta^\ast) = \frac{1}{T} \int_{T} \theta(t) \, dt / H(\theta) \]
with \(T = [0, \hat{\theta}] \).

Consequently, in what follows we will consider strategies wherein low \(\theta \)-types choose P while high \(\theta \)-types choose O. Consider a strategy wherein, for any \(\theta_j \in [0, \hat{\theta}] \), agent \(j \) chooses (P, \(g^P(\theta_j) \)) if \(\theta_j \in [0, \hat{\theta}] \) and (O, \(g^O(\theta_j) \)) if \(\theta_j \in [\hat{\theta}, \theta_G] \). The marginal type \(\hat{\theta} \) thereby characterizes a cutoff rule for every agent \(j \neq i \). Thus, denote the waivable-privacy action function for agent \(j \), \(g^W(\theta_j; \theta_W) \), as \(g^P(\theta_j) \) if \(\theta_j \in [0, \hat{\theta}] \) and as \(g^O(\theta_j) \) if \(\theta_j \in [\hat{\theta}, \theta_G] \). Then the perceived type for any agent who chooses P is given by \(\mu(\theta^\ast) \), the mean of \(\theta \) conditional on \(\theta \) belonging to \([0, \hat{\theta}]\). Let \(G^W(\theta) = ME_\theta(g^W(\theta; \theta_W)) \) denote the aggregate amount of the public good. The net value of privacy over publicity for agent \(i \) of type \(\theta_i \), given that all other agents use the strategy and beliefs specified above, is:

\[\Delta(\theta_i; \theta^\ast) = V_i(g^P(\theta_i), \theta_i, \mu(\theta)), G^W(\theta^\ast)) - V_i(g^O(\theta_i), \theta_i, B^O(g^O(\theta_i)), G^W(\theta^\ast)). \]

As argued above, this net value is decreasing in \(\theta_i \) since \(\partial \Delta(\theta_i; \theta^\ast)/\partial \theta_i = g^P(\theta_i) - g^O(\theta_i) < 0 \) for \(\theta_i > 0 \).

Let \(\theta_W \) denote an equilibrium value of \(\theta^\ast \): that is, a commonly-conjectured cutoff value such that no individual agent of type \(\theta \) will defect from using the cutoff rule \(g^W(\theta; \theta_W) \). The following proposition, which is proved in the Appendix, provides a full characterization of the possible waiver equilibria.

Proposition 5. Symmetric Equilibria under Waivable Privacy.

(a) There is always a full-waiver equilibrium, wherein all types choose to waive privacy and an agent of type \(\theta \) chooses action level \(g^O(\theta) \). Out-of-equilibrium beliefs assign the lowest type to any agent choosing privacy.

(b) If \(\mu \geq \bar{\theta} - (\delta(\bar{\theta}; \beta))^2/2 \), then there is also a no-waiver equilibrium, wherein all types choose not to waive privacy and an agent of type \(\theta \) chooses action level \(g^P(\theta) \). This equilibrium is supported by the beliefs: 1) if the agent chooses P, then \(\bar{\theta} = \mu \); 2) if the agent chooses (O, \(g \)), then \(\bar{\theta} = B^O(g) \). A sufficient condition for this to be the only equilibrium involving privacy is that the conditional mean \(\mu(\theta) \) is concave in \(\theta \).

24 That is, the conditional mean, \(\mu(\hat{\theta}) = \int_{T} \theta(t) \, dt / H(\hat{\theta}) \), with \(T = [0, \hat{\theta}] \).
(c) If \(\mu < \bar{\theta} - (\delta(\bar{\theta}; \beta))^2/2 \), then a no-waiver equilibrium does not exist, but at least one partial-waiver (that is, interior) equilibrium does exist, where \(\theta^w \in (0, \bar{\theta}) \) solves \(\Delta(\theta^w; \theta^w) = 0 \). This equilibrium is supported by the beliefs: 1) if the agent chooses P, then \(\bar{\theta} = \mu(\theta^w) \); 2) if the agent chooses (O, g), then \(\bar{\theta} = B^O(g) \). A sufficient condition for this interior equilibrium to be the only equilibrium involving privacy is that the conditional mean \(\mu(\theta) \) is concave in \(\theta \).

There are always at least two pure-strategy equilibria, one involving waiver by all types so that the publicity outcome is an equilibrium, and the other(s) involving some degree of privacy, including (possibly) a no-waiver equilibrium with privacy chosen by all types. Moreover, under mild assumptions (e.g., that the conditional mean is concave\(^{25} \)), the function \(\Delta(\theta; \theta) \) is concave so that this second type of equilibrium is unique; therefore, in what follows we assume that \(\mu(\theta) \) is concave. Figure 3 illustrates \(g^w(\theta; \theta^w) \) for the partial waiver equilibrium. The base curves are those shown in Figure 2 earlier, but now there is a jump discontinuity at \(\theta^w \). This jump arises because the marginal type is indifferent between taking his full information action in private but being believed to be the mean type in \([0, \theta^w) \), and distorting his public action to obtain the esteem associated with his true type. Thus, equilibrium action choice is always made along the solid portion of the curves.

We have employed the full-publicity equilibrium beliefs to support the partial-waiver equilibrium. That is, action choices that are disclosed and that are in the interval \([g^O(\theta^w), g^O(\bar{\theta})]\) are taken to be from the corresponding type in the interval \([\theta^w, \bar{\theta}] \) given by \(B^O(g) \). What if, however, one observes an action \(g \) which is less than \(g^O(\theta^w) \)? This is now an out-of-equilibrium action choice, which has been made public. This could be because of either of two possible sources of error: 1) perhaps the agent miscalculated \(\theta^w \) (computed a value below his privately observed type, \(\theta \), when the correct value was above \(\theta \)), and then proceeded to

\(^{25} \) For example, if the distribution \(H \) is the uniform distribution, this condition holds. In fact, if \(H \) is one of the family of Beta distributions, extensive computational analysis suggests that as long as the density is bounded, then \(\mu'(\theta) \leq 0 \) for all \(\theta \). Thus, this sufficient condition appears to hold for a highly relevant class of distributions.
Each agent’s ex ante expected esteem is $\beta((\mu(\theta^w)H(\theta^w) + (\mu - \mu(\theta^w))H(\theta^w))) = \beta\mu$.

4.2 Ex Ante Comparisons of Waivable Privacy with Policies of Privacy and of Publicity

Recall from Section 3.4 above the computed versions of the ex ante expected social payoff associated with P (WP) and O (WO). In a similar fashion, the ex ante expected social payoff associated with waivable privacy, denoted as WW, is:26

26 Each agent’s ex ante expected esteem is $\beta((\mu(\theta^w)H(\theta^w) + (\mu - \mu(\theta^w))H(\theta^w))) = \beta\mu$.

Figure 3: Action Function in Partial Waiver Equilibrium

Choose the public action choice $g^O(\theta)$; or 2) since there is always a second equilibrium at $\theta^w = 0$, perhaps there was a coordination failure wherein the agent in question played as if he anticipated the full-waiver equilibrium instead of the partial-waiver equilibrium; that is, he played his equilibrium strategy from the other equilibrium. In either case, mapping the g-value via the dotted curve in Figure 3 (i.e., the part of $g^O(\theta)$ not included in $g^W(\theta; \theta^w)$) to the inferred value of θ provides the needed disincentive to keep types from strategically engaging in such behavior.

Notice that although disclosure of action is costless, the jump in the action function reflects the endogenously-determined cost of disclosing type that accompanies choosing to produce a public, rather than private, action and derive any esteem based on this choice (thereby causing the positive action differential).
Thus, the net ex ante expected social payoff of P versus W, denoted as $\Phi^{PW}(\alpha)$, is:

$$\Phi^{PW}(\alpha) = W^P - W^W = (1/2)E((\delta^W)^2) - \alpha ME(\delta^W),$$

(10)

where, for readability and notational convenience, we let $E((\delta^W)^2)$ denote $\int(\delta(\theta; \beta))^2h(\theta)d\theta$, the partial second moment of $\delta(\theta; \beta)$, and $E(\delta^W)$ denote $\int\delta(\theta; \beta)h(\theta)d\theta$, the partial first moment of $\delta(\theta; \beta)$, where both integrals are over the interval $[\theta^W, \theta^G]$.

Analogously to before, if $\alpha = \alpha^{PW} = E((\delta^W)^2)/(2ME(\delta^W))$, then $\Phi^{PW}(\alpha^{PW}) = 0$, so that when comparing the P and W regimes, when $\alpha < \alpha^{PW}$, a policy of privacy is strictly preferred to a policy of waivable privacy, while if $\alpha > \alpha^{PW}$, a policy of waivable privacy is strictly preferred to a policy of privacy.

Finally, the net ex ante expected social payoff of W versus O, denoted as $\Phi^{WO}(\alpha)$, is:

$$\Phi^{WO}(\alpha) = W^W - W^O = (1/2)[E((\delta)^2) - E((\delta^W)^2)] - \alpha M[E(\delta) - E(\delta^W)].$$

(11)

Analogously to before, if $\alpha = \alpha^{WO} = [E((\delta)^2) - E((\delta^W)^2)]/(2M[E(\delta) - E(\delta^W)])$, then $\Phi^{WO}(\alpha^{WO}) = 0$, so that when comparing the W and O regimes, if $\alpha < \alpha^{WO}$, a policy of waivable privacy is strictly preferred to a policy of publicity, while if $\alpha > \alpha^{WO}$, a policy of publicity is strictly preferred to a policy of waivable privacy.

Note that the equations providing $\Phi^{PO}(\alpha)$, $\Phi^{PW}(\alpha)$, and $\Phi^{WO}(\alpha)$ (that is, equations (4), (10) and (11), respectively) are all of the same form, except for the terms having to do with the first and second moments of the action differential $\delta(\theta; \beta)$. In the case of $\Phi^{PO}(\alpha)$ and the associated α-value α^{PO}, these are the full moments (that is, the integration in the expectations is over $[0, \tilde{\theta}]$) while the other Φ-functions and associated α-values employ partial expectations; for the PW comparison, the partial first and second moments of $\delta(\theta; \beta)$ are taken over $[\theta^W, \tilde{\theta}]$, while for the WO comparison, the partial first and second moments of $\delta(\theta; \beta)$ are taken over $[0, \theta^W]$. Therefore, by construction:

$$\Phi^{PO}(\alpha) = \Phi^{PW}(\alpha) + \Phi^{WO}(\alpha).$$

Using these functions and the α-values where each function switches from positive to negative (a reversal of pair-wise preference) leads us to Proposition 6.
Proposition 6. *Ex ante* Social Ordering of Privacy, Publicity, and Waivable Privacy.

(a) $0 < \alpha_{WO} < \alpha_{PO} < \alpha_{PW}$.

(b) Absent enforcement costs, waivable privacy is never an *ex ante* first-best policy. If $\alpha < \alpha_{PO}$, privacy is strictly preferred, while if $\alpha > \alpha_{PO}$, publicity is strictly preferred.

(c) Absent enforcement costs, waivable privacy is an *ex ante* second-best policy when $\alpha < \alpha_{WO}$ or when $\alpha > \alpha_{PW}$.

(d) If the aggregate social cost of enforcing privacy is $k > \Phi_{PW}(\alpha_{WO})$, and waivable privacy is costless to enforce, then there exists a range of α-values such that waivable privacy is the *ex ante* first-best policy.

(e) If the aggregate social cost of enforcing publicity is $k > -\Phi_{PO}(\alpha_{PW})$, and waivable privacy is costless to enforce, then there exists a range of α-values such that waivable privacy is the *ex ante* first-best policy.

A main result of Proposition 6 is that (absent enforcement costs) waivable privacy is always *ex ante* dominated by either a policy of privacy or a policy of publicity. To see what is going on, consider item (c) above. Here, waiver (W) is second best when $\alpha < \alpha_{WO}$ because O performs so poorly vis-a-vis P, and W has some of the advantages of the P-policy, since some types choose privacy. This is similarly true when $\alpha > \alpha_{PW}$: in this case, the P-policy performs very poorly in comparison with the O-policy, and the W-policy has some of the virtues of the O-policy, since some types do choose to make their actions public. The reason that the W-policy is third-best in item (b) above is that now the P- and O-policies perform more closely to one-another, but the negative attributes of the W-policy become more important: 1) the wrong types are choosing to reveal their actions (the higher types, who incur a much higher action differential in order to signal type); and 2) the marginal type is being “pressured” by the equilibrium to reveal his action when he prefers privacy, but not at the cost of being lumped-in with the lower types. The rankings in Proposition 6(b) and (c) are
shown in Figure 4 below, which illustrates the three functions ($\Phi^{WO}(\alpha)$ as “WO”, $\Phi^{PO}(\alpha)$ as “PO”, and $\Phi^{PW}(\alpha)$ as “PW”) for the case wherein $H(\theta)$ is the Uniform distribution on $[0, 1]$ and $\beta = 1$.

![Figure 4: Ex Ante Social Ordering over P, O, and W Policies](image)

Figure 4 also helps us illustrate the effect of enforcement costs, as discussed in items (d) and (e) of Proposition 6. For example, if there is a cost k of enforcing a policy of privacy, then the Φ-functions PW and PO both shift downward. If that cost exceeds $\Phi^{PW}(\alpha^{WO})$, then the crossing point of the PO and PW Φ-functions shifts below the WO Φ-function, making W a first-best policy over a range of α-values, which depends upon the magnitude of k. Alternatively, if publicity is costly to enforce (and the cost is k), then the PO and WO Φ-functions shift up, while the PW Φ-function does not move. If that cost is greater than $\Phi^{PO}(\alpha^{PW})$, then the crossing point for the PO and WO Φ-functions shifts up, making W a first-best policy over a range of α-values, which depends upon the magnitude of k.27

The foregoing may explain why, for example, a pure policy of privacy is rarely observed (though we

27 The conditions for interim preferences over the policies are provided and explored in the Technical Appendix. Unfortunately, these conditions are very complex. However, there we show that conditions exist such that a subset of the types strictly interim prefers W to either P or O even without enforcement costs.
will discuss two examples in Section 5); enforcement may be too costly, especially if the person whose actions are deemed private does not desire privacy, or is willing to trade that privacy for some specified advantage (which in the model is captured by the esteem, or future trading opportunities, term). Instead, most policies that are concerned with privacy are designed to be waivable by the person who is the subject of the policy. Even the 5th Amendment’s prohibition that no one can be forced to testify against himself is waivable by the defendant. Companies that are particularly privacy-conscious and run web sites that use “cookies” (which can provide tracking information) to personalize customer visits may request permission from a customer to operate such a cookie, or may warn the customer so that they may disable the cookie. Personal insurance contracts often include a limited privacy waiver that allows the insurance firm limited ability to exchange information with corporate partners (e.g., firms providing marketing services for the company in question).

Some waivable privacy policies are concerned with the communication of information to and with advisors. Classic examples of advisor/advisee waivable privacy policies are priest/penitent, lawyer/client, and doctor/patient. In each case one party (the advisor) cannot unilaterally waive privacy, while the other (the advisee) may unilaterally waive privacy. In the case of the spousal privilege, courts enforce the privilege (a pure privacy policy) in the case of “marital communication” by not allowing one spouse to testify against the other with respect to communications in the marriage that were intended to be confidential. However, in criminal cases, a spouse can be called as a witness concerning criminal acts by a defendant and the witness-spouse can choose to waive the privilege unilaterally.

5. Examples of Policies of Privacy, Publicity, and Waivable Privacy

In this section we provide some examples that illustrate how our model might shed light on some current (and some more speculative) policies of privacy and publicity. In general, when α and β are of the same sign, then either privacy or publicity may be \textit{ex ante} preferred, depending on the strength of the public-
good (or public-bad) effect. On the other hand, when \(\alpha \) and \(\beta \) are of opposite signs, then a policy of privacy is *ex ante* socially preferred to a policy of publicity. We provide examples for each of the possible parameter configurations below.

5.1 Examples Wherein \(\alpha > 0 \) and \(\beta > 0 \)

Open-Source Software Development

One plausible application of our model involves open-source software development, wherein independent programmers contribute towards the improvement of a program that is available freely to end-users. These projects typically follow a policy of publicity wherein programmers are credited with their contributions (though of course contributions can be made anonymously). In discussing what motivates programmers to contribute, Lerner and Tirole (2002, p. 213) discuss costs (such as the opportunity cost of the time spent on the project) and benefits, both immediate (such as utility from working on a “cool” open-source project) and delayed (such as possible job opportunities, future access to venture capital, or ego gratification due to peer recognition, presumably all based on others’ inferences about the programmer’s talent). They refer to these delayed benefits collectively as the “signaling incentive,” and provide empirical evidence regarding the benefits that have accrued subsequently to open-source contributors. In terms of our model, the action \(g_i \) represents the extent of the improvement made by agent \(i \), while \(\theta_i \) represents the programmer’s talent or dedication to solving the problem. A programmer enjoys intrinsic utility from advancing the project, and the intrinsically-optimal improvement is higher for more talented or dedicated programmers. Spending time on generating the improvement \(g_i \) has an opportunity cost, reflected in \(p > 0 \). Being inferred to be more talented or dedicated contributes positively to esteem or future trading opportunities, which is reflected in \(\beta > 0 \). Finally, since the resulting software is available freely, these individual improvements contribute to a public good, which is reflected in \(\alpha > 0 \). If we take the prevailing policy (that is, publicity) to be the *ex ante* optimal policy, then our model would suggest that \(\alpha \) is relatively high in the OSS context.
Charitable Giving

Many papers explore various motives for charitable giving, including intrinsic utility and the utility associated with consuming the aggregate public good (Andreoni, 1989), and the desire to signal some attribute to acquire status (Harbaugh, 1998; Glazer and Konrad, 1996). Glazer and Konrad (1996) discuss the use of charitable giving to signal income, where status is assumed to be increasing in perceived (inferred) income. They observe that the charity benefits from the increase associated with public giving, and that this can result in too much of the public good. However, their paper does not include intrinsic utility and does not evaluate welfare under alternative policies.

In order to analyze charitable giving (such as contributing to the local symphony), the model can be generalized to include the agent’s income in the intrinsic utility term. We assume that agent i derives intrinsic utility (“warm glow”) from giving according to the utility function $\gamma g_i - (g_i - \theta_i I)^2/2$, where g_i denotes agent i’s gift and θ_i reflects agent i’s generosity. Thus, more generous agents give more, based on intrinsic utility alone. Suppose that the charitable contributions fund a public good, and that agents who are perceived as more generous receive greater esteem or enhanced future trading opportunities; thus, both α and β are positive. It is straightforward to show that agent i’s gift under a policy of privacy is $g^P(\theta_i; I) = g_{\text{min}} + \theta_i I$ for all $\theta_i \in [0, \bar{\theta}]$, while her gift under a policy of publicity is given implicitly by $g^O(\theta_i; I) = g_{\text{min}} + \theta_i I + (\beta/I)(1 - \exp[-I(g^O(\theta_i; I) - g_{\text{min}})/\beta])$. If each agent’s marginal utility for the public good is low, then a policy of privacy is ex ante optimal. On the other hand, if each agent’s marginal utility for the public good is high, then a policy of publicity is ex ante optimal; while each agent is induced to give more when contributions are made public, each agent benefits substantially from the upward-distorted gifts of the other agents. Contributions to the symphony are acknowledged publicly (often in discrete classifications, rather than actual dollar

28 There is a literature on fund-raising that finds that a charity can benefit by making early donations public when donors move sequentially. This occurs because: an informed donor can signal the “quality” of a charity via an upward-distorted gift (Vesterlund, 2003, 2005); there may be complementarities in giving (Romano and Yildirim, 2001); and this may solve coordination problems when a fixed total contribution is required (Andreoni, 1998; Marx and Matthews, 2000). Our model does not involve any of these effects, so the timing of contributions is irrelevant.
Both Harbaugh (1998) and Rayo (2003) show that schemes wherein coarser information is revealed (for example, contributions are grouped within ranges, so that separate pools are created) can further enhance giving. Of course, giving to either a local symphony or a global relief fund may generate a very high intrinsic value for the giver. In both cases the policy is waivable; one can make an anonymous contribution to the symphony and one can post a receipt for a contribution to a global relief fund on the web, if desired.

Recycling

Another possible application is to recycling. The action g_i represents the extent to which agent i engages in recycling, while θ_i represents the agent’s taste for recycling (or “greenness”). The agent derives some intrinsic utility from recycling, and greener agents naturally engage in more recycling. Recycling may involve a cost ($p > 0$). Being inferred to be more socially-responsible contributes positively to esteem or future trading opportunities, which is reflected in $\beta > 0$. Finally, since recycling conserves scarce resources it contributes to a public good, which is reflected in $\alpha > 0$. In the US, recycling is largely a private matter at present, though as more communities adopt curbside recycling and more schools and businesses provide receptacles, it is becoming more public/observable. Moreover, as resource constraints become tighter, the value of α will arguably increase, which might tip the optimal policy from being one of privacy to one of publicity. In urban South Korea, household recycling has been incentivized since 1995; for instance, individuals must purchase specifically-authorized bags for waste disposal and the disposal of separated recyclables is free (Lee, 2003). There is a fine for the use of unauthorized bags, and even a monetary reward for identifying offenders. Individuals deposit waste and recyclables at public collection points near their apartment buildings. Thus there is likely to be a substantial component of observability and (presumably)

29 Both Harbaugh (1998) and Rayo (2003) show that schemes wherein coarser information is revealed (for example, contributions are grouped within ranges, so that separate pools are created) can further enhance giving.

30 Of course, giving to either a local symphony or a global relief fund may generate a very high intrinsic value for the giver. In both cases the policy is waivable; one can make an anonymous contribution to the symphony and one can post a receipt for a contribution to a global relief fund on the web, if desired.

31 According to Jong (2007), “In the early days of implementing the policy, there were news reports of people rummaging through their neighbours’ trash to find out the identities of offenders so that they could report the culprits and get the cash reward.”
social disapproval associated with poor compliance.\footnote{A reader of a previous version of this paper, who wishes to remain anonymous, suggested hand-washing in public restrooms as an example, wherein hand-washing contributes to public health, and cleanliness is viewed as a personal virtue. It turns out that the placement of observers in public washrooms increases the frequency of hand-washing; see Edwards, et. al. (2002).}

5.2 \textit{Examples Wherein }$\alpha > 0$\textit{ and }$\beta < 0$

When $\beta < 0$, higher perceived types suffer greater disapproval. In the Appendix we show that in this case, the direction of an agent’s action differential is downward: every type (except the highest type, which is now viewed as the “worst” type) chooses a lower level of the action when it is observable than when it remains private. If $\alpha > 0$, then this downward action differential reduces both the agent’s intrinsic utility and her contribution to the public good. Thus, the case of $\alpha > 0$ and $\beta < 0$ clearly implies that a policy of privacy is always socially-preferred to a policy of publicity. Furthermore, in a partial-waiver equilibrium, it is now the lower types that waive privacy and the higher types that choose privacy.

\textbf{Consumption of Health Care}

A prime example with this pattern of the parameters is the consumption of health care (perhaps especially the consumption of mental health care or treatment for addiction). The action g_i represents the amount of health care consumed by agent i, while θ_i represents the agent’s need for health care. An agent with greater health care needs has a higher marginal intrinsic utility for health care.\footnote{The form of the intrinsic utility function implies that maximized intrinsic utility is increasing in θ, which does not seem plausible for the application to health care (since it implies that agents with greater health care needs, if they receive intrinsically-optimal care, have higher utility). However, it is straightforward to modify the intrinsic utility function (e.g., by subtracting a term that depends on θ, but not g_i) to reverse this implication without changing the optimal action g_i or any of the model’s other implications.} Health care has a cost, which is reflected in $p > 0$. Obtaining needed health care contributes to the public good (that is, $\alpha > 0$) under a variety of interpretations. For instance, it suppresses communicable diseases, and it improves work productivity (to the extent that there are complementarities among workers, these benefits extend beyond the private benefits reaped by the worker). However, being inferred to require more health care may contribute negatively to esteem or future trading opportunities; thus $\beta < 0$. Hence, a policy of privacy results in an
increased consumption of health care (relative to a policy of publicity), which provides both a private and a public good.

DNA Dragnets

Another interesting example is the DNA dragnet, wherein a crime leaving DNA evidence has occurred, and members of an entire community are asked to provide a sample.\(^{34}\) Although the action space here is binary (provide a sample, or do not provide a sample), many of the features of our model are present. Providing a DNA sample may contribute to a public good, that is, the apprehension of a criminal and at (presumably) lower cost; thus \(a > 0\). In terms of intrinsic utility, a guilty agent will be disinclined to provide a sample, but even innocent agents might be concerned about future negative consequences (e.g., the sample might be retained despite the promise that it would be disposed of at the closure of the investigation; it might be mis-handled, resulting in a risk of conviction in the instant, or some subsequent, crime; or the sample may contain other information not pertinent to the instant crime, but which might leave the agent open to blackmail). Thus, one might think of \(\theta_i\) as reflecting an innocent agent’s degree of suspicion about the police and the use that might be made of the DNA. People who are perceived to be more suspicious (higher \(\theta\)) may incur more disapproval or lower future trading opportunities, as well as being possibly pooled with the guilty party, so \(\beta < 0\).\(^{35}\) Thus, one would predict that the set of types would be partitioned into one set that volunteers a sample (these would be the less-suspicious types) and another set that declines to provide a sample (these would be the more-suspicious types, plus the guilty party). Declining to provide a sample results in an inference that the agent is, at best, a suspicious type and, at worst, the guilty party. Although each agent has a right to privacy (absent probable cause), it is waivable, and the coercive effect of waivable privacy is clear: there will be some (perhaps very many) types who would prefer not to provide their DNA,

\(^{34}\) DNA dragnets first appeared in the UK in 1987 in a serial rape and kidnaping case, and are now employed in the UK, Europe, and more recently, the US; see Drobner (2000).

\(^{35}\) If one wanted the model to allow for types that voluntarily waived privacy and cooperated to derive an esteem benefit from being perceived as less suspicious, then one might simply modify the model as discussed earlier (see footnote 13) and have the esteem term enter as \(\beta(\theta_i - \mu)\).
but end up doing so in order to avoid the adverse inference.

5.3 Examples Wherein $\alpha < 0$ and $\beta > 0$

Here the setting is an action that creates individual esteem but contributes to a public bad. When α is negative but $\beta > 0$, then again a policy of privacy is always *ex ante* optimal.

Student Rankings

An interesting policy is the University of California at Berkeley Boalt Hall Law School’s policy of not reporting class rank to potential employers.36 The law school does not report class rank; indeed, it provides the student with this information in non-verifiable form and makes it an honor code violation to reveal it, so this privacy is not even waivable. In terms of our model, g_i is student i’s competitive effort and θ_i is agent i’s talent; more talented students experience higher marginal utility of effort and optimally work harder. Moreover, the student’s final class rank is likely to affect positively the esteem in which the student is held by peers and his or her future employment options, so $\beta > 0$. The use of such a policy suggests that the Law School views the resulting expansion in competitive effort (if class rank were public) as being dissipative or even counter-productive to educational objectives; thus α is small or even negative.37

Inadmissibility of Settlement Offers at Trial

Another example in which non-waivable privacy is the prevailing policy is Federal Rule of Evidence 408, which makes the details of failed settlement negotiations inadmissible in court. As shown in Daughety

36 This policy is available at www.law.berkeley.edu/students/registrar/academicrules/; see Section 3.06. Exceptions are made for students applying for clerkships or academic positions that require the information. We thank Eric Talley for drawing this policy to our attention.

37 Ostrovsky and Schwarz (2008) provide other examples in which schools engage in partial suppression of information through (for example) issuing “noisy” transcripts. They show that, if a school’s objective is to maximize the average desirability of its alumni’s job placements, then it can be optimal to disclose an intermediate amount of information about a student’s ability (type). Their model does not involve endogenous effort on the part of students (and therefore does not consider effort-based externalities among students), and does not examine the social desirability of privacy.
and Reinganum (1995), a plaintiff with private information about her damages has a greater incentive to inflate her demand when it will also be observed by the judge should the case come to trial, as a higher demand is inferred to reflect higher damages implying a higher reward at trial (and thus, $\beta > 0$). This results in more failed negotiations, more cases coming to trial, and thus greater court congestion and increased litigation costs, which is a public bad (and thus, $\alpha < 0$). Privacy is the ex ante optimal policy in this case, and privacy is ensured by Rule 408.

5.4 Examples Wherein $\alpha < 0$ and $\beta < 0$

When both α and β are negative, then a policy of publicity may be ex ante preferred; by making their actions public, agents are induced to choose lower levels, thus contributing less to a public bad. However, a policy of publicity will be preferred to a policy of privacy only if α is sufficiently negative.39

Electricity and Water Usage During Periods of Voluntary Rationing

Electricity or water usage are examples wherein greater use contributes to a public bad (air pollution or the risk of a brown-out and depletion of the water table, respectively), and may be viewed adversely by other members of society. In this application, g_i is agent i’s consumption of electricity or water, while θ_i represents an attribute such as selfishness or wastefulness. In this case, publicity (or “shaming”) can induce reductions in use; this may or may not be socially-optimal, since individuals’ intrinsic utility will also be reduced as they consume less than their intrinsically-optimal level of electricity or water. Although, currently, agents’ usage of electricity or water tends to be private, technologies are being developed that would allow individuals to elect publicity, and compulsory publicity is not outside the realm of possibility.

38 The model in Daughety and Reinganum (1995) differs in the payoff structure, but contains the same elements: intrinsic utility, a public-bad aspect, and a continuation value based on inferred type.

39 The following examples are about actions that generate a relatively mild public bad, as actions that generate a severe public bad are generally the subject of criminal fines and penalties. Moreover, we have restricted the analysis to a symmetric agent model, so that would require that all agents are willing to engage in such activities and create a public bad, which is more likely to be true of a mild public bad than a severe one. Thus, not everyone will drive under the influence or patronize a prostitute, both of which have been subjects of publicity policies in some jurisdictions. Finally, focusing on a severe public bad raises the separate question as to whether a perpetrator’s utility belongs in the social welfare function.
For instance, according to Thompson (2008), a recent invention (called the Wattson) “not only shows your energy usage but can also transmit the data to a Web site, letting you compare yourself with other Wattson users worldwide.” The idea is that “You’d work harder to conserve so you don’t look like a jackass in front of your peers.” Goodman (2007) reports that during a recent extended drought in Georgia, a Marietta man’s water usage was disclosed by the local ABC affiliate (approximately 14,700 gallons per day, compared to an average in the Atlanta area of about 183 gallons per day). A public relations specialist for the man indicated that he “had only recently become aware of the severity of the water crisis and was now taking steps to conserve.” Cobb County subsequently released the names of ten more major water users.

Shaming Speeders

Driving faster than the posted speed limit is another potential application of our model. Here, the amount of the public bad is best viewed as the average amount of speeding by drivers, rather than the aggregate amount of speeding, but this is a trivial modification of the model. Everyone engages in speeding, to some extent; let g_i denote agent i’s speed in excess of the limit, and let θ_i represent an attribute such as selfishness or carelessness toward others. Depending on its extent, speeding has substantial negative externalities in terms of the risk of accident and injury to others (so $\alpha < 0$) and selfish or careless types are likely to receive social disapproval (so $\beta < 0$). Thus, a policy of publicity, which is predicted to reduce speeding, may be optimal. Such a policy has been instituted recently in the UK. As observed in a recent press release concerning this policy: “The London Safety Camera Partnership has installed England’s first fixed speed indicator device with automatic number plate recognition. Drivers who break the 30 mph limit as they approach Richmond Circus will see their speed and number plate flash up on the roadside screens. It is hoped the embarrassment of seeing their illegal driving illuminated in this way will encourage motorists to stick to the limit. If the trial proves successful, the device could be rolled out London-wide” (see London Borough of Richmond upon Thames, 2008). A similar policy and device has been tested on the M42 in the Midlands, UK, and “almost half of drivers breaking the limit slowed” (see Auto Express News, 2006).
Earmark Publicity

A recent political issue that has arisen is the propriety of allowing legislators to pass bills with “earmarks” which fund pet projects without identifying the sponsor of the earmark; the earmark directs funds and typically avoids the standard process wherein funds go through a federal agency and are subject to executive control. Earmarks are frequently added to legislation after the basic bill has been passed by both houses, during the “conference” phase; as such they occur essentially in secret. Let g_i represent Senator i’s proposed spending on earmarks and let θ_i reflect Senator i’s willingness to re-direct public funds to pet projects; this suggests that $\beta < 0$, reflecting social disapproval. From the members’ point of view, α is negative (earmarks result in a bloated budget or come at the cost of other, more worthy projects). The perception that earmarking was out of control led to the Legislative Transparency and Accountability Act of 2006 which passed the Senate on a vote of 90 to 8; the Act required a formal listing of earmarks and of each earmark’s sponsor’s name (this legislation, however, eventually failed to pass both houses of Congress).

6. Summary and Conclusions

In this paper we develop an economic model of privacy, concentrating on privacy of action. Privacy of action means that relevant actions are not publically observable but rather are protected from the public glare. Under privacy of action, agents choose their full-information optimal actions. Our model incorporates three primary elements: 1) an intrinsic value for the activity involved; 2) esteem (or in some examples, social disapproval); and 3) consumption of any public-good (or public-bad) aspects that arise from the aggregate activity of all individuals. We show that privacy can be welfare-enhancing in both ex ante expected social welfare terms and in interim (that is, type-specific) terms, though a conflict can readily arise between the policy that is ex ante best and the policy that the median type interim prefers. If compliance with a pure policy of privacy (or a pure policy of publicity) is sufficiently costly to enforce, then a policy of waivable

privacy can be *ex ante* socially preferred; otherwise, waivable privacy is never the socially-preferred policy. A policy of waivable privacy gives rise to two types of pure-strategy equilibria: 1) one wherein all types choose to publically reveal their actions (with the concomitant change in action) and 2) one wherein a subset of types (possibly empty) chooses to make their actions public while the rest choose to keep their actions private.

We applied our model in a number of settings, but the bottom line is that there is an *ex ante* expected social preference for privacy when the effects of esteem and the marginal utility of the public good enter the agent’s utility function with different signs. On the other hand, there will be ranges of social preference for privacy or publicity when these forces work in the same direction, with the primary dividing point depending upon the magnitude of the public-good (or public-bad) effect: only when this effect sufficiently outweighs the disutility of the action differential due to publicity will it be optimal to choose publicity.

We have formulated the model at a rather abstract level in order to identify the fundamental tradeoff – between the expected disutility due to signaling and the increased contribution to the public good – that generates the social choice of privacy policy. We believe that this basic model can serve as a useful foundation for models that are more tailored to specific applications, possibly involving finitely many agents, greater strategic interaction, and more detailed modeling of the continuation value. We briefly discuss each of these extensions below.

We have considered a continuum of agents; adapting the model to a society with a small number of agents will involve two complications that arise from the fact that each agent is now non-negligible in the aggregate amount of the public good provided. First, having a small number of agents may create information flows even under a policy of privacy of action (knowledge of the aggregate amount of the public good and one’s own contribution can be used to update beliefs about others’ contributions and hence their types). Second, having a small number of agents may create strategic interactions via substitution effects or complementarities among their actions. This would necessitate the use of a simultaneous signaling model
wherein each agent’s action as a function of his type satisfies not only the incentive compatibility conditions required for separation, but also the best-response condition necessary for a Nash equilibrium.41

In the current model, the price of the action is captured by the parameter p. Two variations could be of interest. First, we have not made p a function of the aggregate level of activity, G. This would not affect our results in the continuum-of-agents case, since G is not influenced by an individual’s action choice; however, it would introduce a strategic interaction in the small-numbers case. A second variation would be to make p conditional on the agent’s type. This would modify the first-order conditions for both gP and gO (as p enters gmin). This would particularly complicate gO, as it is the solution to a differential equation.

We have assumed that the continuation value is a linear function of an agent’s inferred type. While this is a common specification, it omits another influence that may affect the social preference over privacy versus publicity. Consider the case in which the agents’ actions contribute to a public good (that is, α > 0) and higher types are accorded greater esteem (that is, β > 0), and suppose that the continuation value as a function of inferred type is given by W(θ). Then the ex ante expected continuation value would be E(W(θ)) under a policy of publicity resulting in a separating equilibrium, and it would be W(E(θ)) under a policy of privacy. If E(W(θ)) > W(E(θ)) (as would occur, for instance, if the function W(•) were convex), then this additional effect would favor publicity. That is, publicity would be the socially optimal policy for somewhat lower values of the marginal utility of the public good (i.e., αPO would be lower); publicity might be optimal even for somewhat negative values of α. On the other hand, if E(W(θ)) < W(E(θ)) (as would occur, for instance, if W(•) were concave), then this additional effect would favor privacy. That is, privacy would be the socially optimal policy for somewhat higher values of the marginal utility of the public good (i.e., αPO would be higher). Similar results would follow if the continuation values were functions of other agents’ types as well (as would occur, for instance, if the continuation game involved matching of agents); again, inclusion of these effects could move the social indifference point in one direction or the other, depending

41 See Mailath (1989) and Daughety and Reinganum (2008, forthcoming-b) for examples of simultaneous signaling games.
on the fine details of the continuation value function.

Two further extensions would be to address more precisely the continuation value issue raised above and to allow for a richer range of agent behavior. In the first case, one could marry the analysis in the current paper to a matching model so as to address more carefully the issue of efficiency losses or gains generated by privacy protection. This would endogenize the continuation value to the agents. Second, the current model assumes all agents are fundamentally the same except for a one-dimensional type space. One might want to allow for agents to have multi-dimensional types, so that some agents in the population might entertain engaging in activities that others would eschew: some agents might engage in criminal or reprehensible behavior (for example, driving under the influence or patronizing prostitutes) that others would never consider. The extension to multi-dimensional types would also allow for an examination of situations wherein two agents of very different types take the same observable actions (would reading about the life and times of a famous terrorist be associated with someone interested in understanding the world, or is it a signal of a budding terrorist?). In both instances social policies involving exposure or shaming have been considered (and sometimes used), with potentially positive or negative social effects.
References

Rayo, Luis, “Monopolistic Signal Provision,” mimeo, Graduate School of Business, University of

Appendix

This appendix provides details of the computations discussed in the text as well as the derivation of the waiver equilibria and a discussion of the separating equilibrium when $\beta < 0$. Proofs of comparative statics results and an analysis of interim preferences over privacy, publicity, and waivable privacy can be found in the Technical Appendix.

Computational Results on the Effect of β on α^{PO}

The Table below displays computational results for four density functions: 1) the Uniform density, with $h(\theta) = 1$; 2) the Left Triangle density, with $h(\theta) = 2 - 2\theta$; 3) the Middle Triangle density, with $h(\theta) = 4\theta$ when $\theta \leq \frac{1}{2}$, and $h(\theta) = 4 - 4\theta$ when $\theta > \frac{1}{2}$; and 4) the Right Triangle density, with $h(\theta) = 20$. Notice that the Uniform density is a mean-preserving spread of the Middle Triangle density.

<table>
<thead>
<tr>
<th>Density</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>0.40859</td>
<td>0.69264</td>
<td>1.14159</td>
</tr>
<tr>
<td>Left Triangle</td>
<td>0.36996</td>
<td>0.61131</td>
<td>0.96546</td>
</tr>
<tr>
<td>Middle Triangle</td>
<td>0.41363</td>
<td>0.69296</td>
<td>1.10361</td>
</tr>
<tr>
<td>Right Triangle</td>
<td>0.43900</td>
<td>0.75341</td>
<td>1.22101</td>
</tr>
</tbody>
</table>

The Table suggests that, for a given density, increasing β increases α^{PO}, so that $\Phi^{PO}(\alpha^{PO})$ shifts up, associating more values of α with privacy than were associated with the lower value of β. Also, note that, holding β constant, the computed values of $E(\delta^2)/E(\delta)$ increase as we move from the Left to the Middle to the Right Triangle distributions. Thus, the Table is consistent with the conjecture that a shift in H to a new distribution H', where H' first-order stochastic dominates H, results in higher values of α^{PO} as well (i.e., upward shifts of Φ^{PO}, too).

Material on Deriving Waiver Equilibria

Recall the definition of $\Delta(\theta; \hat{\theta})$ from the text: $\Delta(\theta; \hat{\theta}) = \nu(g^\mu(\theta), \theta, \mu(\hat{\theta}), G(\hat{\theta})) - \nu(g^\alpha(\theta), \theta, \alpha(\hat{\theta}), G(\hat{\theta}))$ is the net value for agent i of type θ_i of privacy over publicity, given that all other agents use the strategy and beliefs specified in the text. It is straightforward to show that this net value is decreasing in type. Let θ^0 denote an equilibrium value of $\hat{\theta}$. There are three possible types of equilibria with waiver. First, $\theta^0 = \theta$ is an equilibrium if and only if $\Delta(\theta; 0) \leq 0$; to see this, note that if all other agents’ types choose O and $\Delta(\theta; 0) \leq 0$, then $\Delta(\theta; 0) < 0$ for all $\theta_i > 0$, so all of agent i’s types will also choose O. This is a full-waiver equilibrium, in which every type discloses his action and chooses his action according to $g^\alpha(\theta)$.

Second, $\theta^0 = \theta$ is an equilibrium if and only if $\Delta(\theta; \theta) \geq 0$; to see this, note that if all other agents’ types choose P and $\Delta(\theta; \theta) \geq 0$, then $\Delta(\theta; \theta) > 0$ for all $\theta_i < \theta$, so all of agent i’s types will also choose P. This is a no-waiver equilibrium, in which no type discloses his action and every type chooses his action according to $g^\mu(\theta)$. Finally, $\theta^0 \in (0, \theta)$ is an equilibrium if and only if $\Delta(\theta^0; \theta^0) = 0$; to see this, note that if all other agents’ types choose P when $\theta < \theta^0$ and O when $\theta \geq \theta^0$ and if $\Delta(\theta^0; \theta^0) = 0$, then $\theta_i = \theta^0$ is indifferent between P and O (and hence willing to choose O). Moreover, $\Delta(\theta^0; \theta^0) > 0$ for $\theta_i < \theta^0$ and $\Delta(\theta^0; \theta^0) < 0$ for $\theta_i > \theta^0$; that is, agent i will choose P for $\theta_i < \theta^0$ and O for $\theta_i > \theta^0$. Thus, we have confirmed that if all other agents choose P (and the action $g^\mu(\theta)$) when $\theta < \theta^0$ and choose O (and the action $g^\alpha(\theta)$) when $\theta \geq \theta^0$, then it will be a best response for agent i to do so as well. When $\theta^0 \in (0, \theta)$, we will refer to this as a partial-
waiver equilibrium in which some agent types disclose their actions, while others keep their actions private.

Calculation (incorporating the equilibrium beliefs) yields: \(\Delta(\theta; \theta^w) = (\delta(\theta; \beta))^2/2 + \beta[\mu(\theta^w) - \theta]. \)

Thus, there is always an equilibrium at \(\theta^w = 0 \), since \(\Delta(\theta; 0) = 0 \). In this equilibrium, all types choose to waive privacy and we obtain the full-publicity outcome discussed in Section 3.3 as an equilibrium. Moreover, using the fact that \(g^O(\theta) = 1/(1 - \exp \left[-(g^O(\theta) - g_{\min})/\beta\right]) > 0 \), it is straightforward to show that \(d\Delta(\theta; \theta)/d\theta = \beta[\mu'(\theta) - (1 - \exp[-(g^O(\theta) - g_{\min})/\beta])] > 0 \) when evaluated at \(\theta = 0 \), so that there is at least one more equilibrium. If \(\Delta(\theta; \theta) \geq 0 \) then there is a no-waiver equilibrium wherein all types choose not to waive privacy and we obtain the full-privacy outcome discussed in Section 3.2. If \(\Delta(\theta; \theta) \) is concave, then this is the unique equilibrium involving privacy. Finally, if \(\Delta(\theta; \theta) < 0 \) then there is a partial-waiver equilibrium as described earlier. A necessary and sufficient condition for such an interior equilibrium to exist is that distorting so as to signal type is not too costly in the sense that \(\mu < \theta - (\delta(\theta; \beta))^2/2\beta \). Moreover, such an interior equilibrium will be unique if \(\Delta(\theta; \theta) \) is concave; a sufficient condition for this to hold is that \(\mu^o(\theta) < 0 \) for all \(\theta \).

Discussion of the Separating Equilibrium for \(\beta < 0 \)

All of the arguments given in the text for the case of \(\beta > 0 \) still apply to the case of \(\beta < 0 \), with one exception (the boundary condition). Thus, the ordinary differential equation \(dB^O(g)/dg + B^O(g)/\beta + (g_{\min} - g)/\beta = 0 \) still characterizes the equilibrium relationship between beliefs and actions. However, now the “weakest” type is type \(\theta \), so this is the type which need not distort its action to be identified. Consequently, the relevant boundary condition becomes \(g^O(\theta) = g^O(\bar{\theta}) = g_{\min} + \bar{\theta} \) or, in terms of the beliefs, \(B^O(g_{\min} + \bar{\theta}) = \bar{\theta} \).

As before, this differential equation has a one-parameter family of solutions; imposing the boundary condition selects a unique solution:

\[
B^O(g) = g - g_{\min} - \beta(1 - \exp[(g_{\min} + \bar{\theta} - g)/\beta]).
\]

Inverting the function \(B^O(g) \) results in an equation that defines \(g^O(\theta) \) implicitly:

\[
g^O(\theta) = g_{\min} + \theta + \beta(1 - \exp[(g_{\min} + \bar{\theta} - g^O(\theta))/\beta]). \tag{A2}
\]

The separating equilibrium \(g^O(\theta) \) is still increasing in \(\theta \); therefore the term in the exponential function is negative, and hence (since \(\beta \) is negative) the third term in this equation is strictly negative for \(\theta < \bar{\theta} \). Thus, the agent’s action is now downward-distorted under publicity, with the greatest action differential occurring for the lowest type, \(\theta = 0 \). In order to ensure that \(g^O(\theta) \geq 0 \), it is sufficient to assume that \(g_{\min} \geq -\beta \).