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Abstract

Does demand for safety create instability ? Secured (repo) funding can be made so safe that it
never runs, but shifts risk to unsecured creditors. We show that this triggers more frequent runs
by unsecured creditors, even in the absence of fundamental risk. This e↵ect is separate from the
liquidation externality caused by fire sales of seized collateral upon default. As more secured
debt causes larger fire sales, it leads to higher haircuts which further increase the frequency of
runs. While secured funding combined with high yield unsecured debt may reduce instability,
the private choice of repo funding always increases it. Regulators need to contain its reinforcing
e↵ect on liquidity risk, trading o↵ its role in expanding funding by creating a safe asset.
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1 Introduction

Credit expansion during the recent financial boom was to a large extent funded by strong

demand for safe dollar assets (Caballero and Krishnamurthy, 2009), as well as by rising financial

leverage facilitated by collateralized lending. Once the exposure of bank credit to both credit

and liquidity risk became manifest, banks and shadow banks su↵ered massive unsecured debt

runs. In contrast, secured financial credit (a repurchase agreement known as repo) kept being

rolled over until the eve of default for Bear Sterns and Lehman. Only at the peak of the

crisis, repo debt ran in the specific form of higher haircuts (Gorton and Metrick, 2012).1 Upon

Lehmann’s default, massive fire sales of repossessed collateral by repo lenders played a critical

role in propagating distress.

Since the crisis, the role of secured financial credit has come under sharper focus (Du�e

and Skeel, 2012). Repo funding grew spectacularly during the boom, as it was designed to be

extremely safe (as it indeed proved to be). Secured funding (which includes repo and derivative

margins) is cheap, safer and in fact proved to be more stable than traditional unsecured funding.

Besides its role in triggering collateral fire sales in default, how does it contribute to instability?

We show here that its safety provisions create more frequent runs by making unsecured debt

feel insecure. We follow the literature by explaining repo as a response to strong demand for

absolute safety.2 Repo funding is targeted to the most risk averse savers, historically willing

to pay a safety premium (Krishnamurthy Vissing-Jorgensen, 2012). In our setting, secured

lending may be made safe in any default, so that it is always rolled over in equilibrium. As

it is less expensive, it is a desirable source of funding. Our paper is the first to study its

direct interaction with unsecured demandable debt, the traditional form of bank funding. In

the absence of coordination issues, concentrating risk towards the more risk neutral lenders

would be e�cient. However, demandable bank funding introduces the possibility of multiple

1Krishnamurthy, Nagel and Orlov (2012) question the scale of the repo runs, based on flow of funds and
tri-party repo data. Unfortunately, there is no precise data on the scale of bilateral repo lending.

2This view is also at the heart of recent work on shadow banking and safety traps (Gennaioli et al., 2013;
Gorton and Ordoñez, 2014; Caballero and Fahri, 2013; Ahnert and Perotti, 2014.
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equilibria and runs (Diamond and Dybvig, 1984), driven by strategic complementarity. In line

with this literature, we consider a set up with an unique run equilibrium in a global game

setting (Morris and Shin, 2003; Goldstein and Pauzner, 2005). In order to focus on instability,

in our setting there is in the limit no fundamental asset risk at maturity. Thus (almost) all

runs are ine�cient as they cause unnecessary costly liquidation.

As secured debt receives the safer part of asset return, it leaves each unit of unsecured

debt more exposed to risk. Our main result is that this causes more frequent unsecured

runs, because of a stronger strategic complementarity inducing more runs even in solvent

states. There is both a direct and an indirect risk creation e↵ect. The direct e↵ect is due to

increased risk concentration on each unit of unsecured debt, which shifts the threshold for a

self protecting run (Goldstein and Pauzner, 2005). In this sense, an increase in safe debt makes

other creditors more ”insecure”. This novel direct e↵ect adds to the well established liquidity

risk externality associated with fire sales of seized collateral upon default.3 As these cause

illiquidity, they induce safety-conscious repo lenders to adjust haircuts. We next show that

this increase in collateralization further concentrates risk on unsecured debt and thus shifts

again the run threshold. Intermediaries recognize the run risk caused by repo borrowing, but

as it is inexpensive they may wish to attract some, o↵ering a higher return to unsecured debt

to compensate for the chance of default. We show that the private funding choice maximizes

the volume of secured debt, and cause more runs and default risk than the social optimum.

The e↵ect depends on asset liquidity and on the yield o↵ered to demandable debt. A high

rollover premium for unsecured debt reduces the frequency of runs. While a social planner

may use the lower cost of repo funding to increase the rollover premium and reduce runs, a

private intermediary will minimize its funding cost, choosing a higher average return at the

cost of more runs. The model o↵ers intuitive comparative statics results. A higher rollover

premium reduce runs. Higher asset liquidity ceteris paribus reduces instability. However, if the

intermediaries pledges this liquidity to repo lenders, the chance of runs may actually increase.

3This liquidity risk e↵ect is present in all repo run models (Martin et al 2012, Oehmke 2014).
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In sum, our result shows how secured debt may contribute to risk creation beyond the

broadly accepted view of a risk externality associated to repo’s bankruptcy privileges (Du�e

and Skeel, 2012). To avoid a hasty termination of real projects, bankruptcy law forces an

automatic stay on all lenders to ensure orderly resolution. As secured financial debt is exempt,

it immediately repossess and sell the pledged collateral upon default. In our setting, more repo

funding increases the frequency of (unsecured) runs, thus causing more collateral sales. 4 Note

that by itself, sales of repossessed collateral do not force faster liquidation of bank assets, as

these are sold under orderly resolution. However, they increases its illiquidity, which in turn

raises ex ante haircuts. Higher overcollateralization increases the chance of runs for all banks,

a risk externality not internalized by individual intermediaries. 5

In conclusion, unregulated secured funding not just redistributes risk, but increases it by

causing more runs and more early liquidation, a loss that should be traded o↵ against its lower

cost.

An implication is that regulatory policy should monitor and constrain the scale of secured

funding, in order to reduce the associated liquidity risk. 6. It may also seek to increase the

resilience of unsecured debt by increasing its rollover return above what a private intermediary

would choose to do.

Finally, we consider how secured credit interacts with deposit insurance. We show that

the increased instability create larger losses for the deposit insurance fund. This occurs not

only because secured assets are subtracted from resources available in default, but because of

increased run frequency by unsecured creditors.

A more complete welfare assessment of secured debt should take into account its role in

satisfying the demand for safety by some investors, and thus expanding funding supply to

credit intermediaries. In the model we sidestep this welfare issue by assuming that agents have

4On the main features of safe harbor and the associated incentives to resell quickly seized collateral, see
Perotti (2011) and Du�e and Skeel (2012)}.

5In our framework the private choice of secured funding is already at the maximum, thus the liquidity
externality a↵ects the frequency of runs but does not contribute to a further increase in repo funding.

6This may be achieved by capping it, or by imposing a Pigouvian charge to balance the externality e↵ect.
The optimal balance of ratio vs charges depends on the degree of bank capitalization (Perotti and Suarez, 2011)
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a safe storage option, but the issue becomes salient in a situation of excess demand for safety.

Attracting very risk averse agents at a low cost may increase the scale of investment, both by

increasing the scale of funding and reducing the marginal required rate of return. In a more

complete model with decreasing returns, attracting repo funding enables marginal projects to

be funded, as in Ahnert and Perotti (2014).

Our approach o↵ers a distinct contribution by showing the possibility of purely inessential

runs. This result is derived by a realistic description of the bank default process that simplifies

the solution of the global game. In our model, a bank may be declared in default once it runs out

of liquid reserves, provided the value of its risky assets under immediate liquidation would fail

to meet all remaining withdrawals.Once the bank exhausts its liquid assets it declares default

and closes its doors.7 The mandatory stay imposed by bankruptcy law enables liquidators to

pursue an orderly resolution process, achieving a higher asset sale value.

Related literature

A literature has emerged since the crisis to analyse the behavior and consequences of repo

lending, recognizing its origin in a strong demand for safety. Martin, Skeie and von Thadden

(2013) study the dynamics of repo runs and their price impact, showing the critical role of

collateral liquidity. Such liquidity risk may trigger ine�cient runs, analogous to runs driven

by poor coordination by demandable debtors (Diamond and Dybvig (1983), Goldstein and

Pauzner (2005)). He and Xiong (2011) provide a dynamic model of runs when debt is staggered,

where creditors’ roll-over decision depends on beliefs about other creditors’ subsequent roll-

over choice. Kuong (2013) considers the case when unsecured debt responds to higher repo

margins by demanding higher required return, and shows that the resulting higher leverage

directly a↵ects risk taking by borrowers. Auh and Sundaresan (2014) looks at the e↵ect of

repo illiquidity risk on long term debt. These papers do not compare repo with other claims of

the same maturity, so there is no direct interaction e↵ect. In our set up, repo emerges as the

7In contrast, in the traditional bank run approach withdrawing individuals may consume all assets. As a
result, the payo↵ to a run is non monotonic in the signal.
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preferred choice by investors seeking absolute safety. We assume all debt is demandable, or in

any case has a common rollover date, to measure the interaction independently from maturity

e↵ect. In principle there should be a rationale for demandable debt, such as contingent liquidity

demand by traditional depositors. Consistent with this view, intermediaries in our model hold

some liquid reserves to meet withdrawals. Our results do not depend on secured debt being

demandable, as it is designed to be absolutely safe even in a run. Martin, Skeie and von

Thadden (2013) propose that secured credit arise when asset values are non verifiable. Auh

and Sundaresan (2014) argue that repo funding demands collateral to avoids violations of

absolute priority.8 They show that a firm may issue repo loans to save on the cost of long term

debt, but will not issue too much when collateral liquidity is low, to avoid liquidation losses.

Gorton and Ordoñez (2014) elaborate on the view that information-insensitive claims arise

to overcome adverse selection (Pennacchi and Gorton, 1999). Collateral runs may be triggered

when it become information sensitive. Intriguingly, larger runs occur after a long positive

period reduces the stock of public information.

A key driver in our approach is that safe claims are cheaper, as investors seeking absolute

safety are willing to pay a safety premium. A financial pledge can be designed to avoid risk in

all states. Such a strong investor preferences for safety has now been documented extensively

(Gorton Lewellen Metrick (2012), Krishnamurthy Vissing-Jorgensen (2012)), and is leading to

a new view of risk attitudes. Recent models assume some agents act as (locally) infinitely risk

averse, either because of Knightian or salient beliefs, or in order to achieve a subsistence level

of wealth in all states (Caballero Fahri (2013), Gennaioli et al (2013), and Ahnert and Perotti

(2014)). Earlier work interpreted demand for safe assets as means for transaction services,

with money in the utility function. Stein (2013) shows how this may lead to excess creation

of bank demandable claims, and may lead to fire sales. Perotti and Suarez (2011) discuss the

relative e↵ectiveness of price- versus quantity liquidity rules when banks di↵er in their quality

and risk incentives.
8In many cases it is ex post e�cient to violate absolute priority rules, e.g. to ensure proper continuation

incentives.
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A key amplification e↵ect may result from the special bankruptcy treatment for collateral-

ized financial credit, the ”safe harbor” privileges. This unique status creates a proprietary right

directly enforceable on assets. This avoids risks such as excessive issuance or imperfect enforce-

ment that dilute the value of any unsecured debt. Legal changes to the US and EU bankruptcy

codes since 1978 steadily extended the privileges for secured credit and the scope for eligible

collateral. 9 The key privilege is the ability of secured financial creditors to gain immediate

access to the collateral (a unique privilege not enjoyed by any other claim, not even secured

real credit). This super priority status supported during the boom the spectacular growth for

the repo market as well as for all derivative contracts, which also rely on collateralized margins

(Bolton and Oehmke, 2013). The bankruptcy privileges have drawn considerable attention

since the crisis. Legal scholars question whether it is justified to grant superior bankruptcy

privileges to repo and derivatives (e.g. Roe 2011). Bolton and Oehmke (2011) shows it leads

to excess risk incentives in the use of derivatives, as they enable to shift risk to other credi-

tors. Du�e and Skeel (2012) argue that in order to reduce the risk of fire sales, only cash-like

collateral may be excluded from automatic stay. 10 Mandatory stay is the core instrument of

orderly resolution in bankruptcy law, created to avoid the externality caused by uncoordinated

asset stripping by creditors. The consequences of immediate repossession of collateral upon

default became visible when Lehman Brothers collapsed. Within hours, hundred of billion in

securities were repossessed, and immediately resold by risk averse repo lenders. The collapse

in collateral prices and liquidity propagated the shock to the entire system. If repossession

had occurred under a traditional orderly resolution plan, it would not have led to such rushed

sales. Acharya, Anshuman and Vishwanthan (2012) argue for automatic stay provisions to

avoid such fire sales. Perotti (2011) argues that safe harbor is what enables shadow banks to

credibly promise liquidity on demand. By pledging the liquid component of assets, it repli-

cates the banking model outside the regulated perimeter. Hanson, Stein, Shleifer and Vishny

9Privileges include exemptions from preference, netting, cross-default and eve-of-default norms (Perotti
2013).

10This is equivalent to a narrow shadow banking model, also invoked in Gorton and Metrick (2012).
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(2014) show that banks are best at funding less risky but less liquid projects. As a result,

”although traditional banks have more stable funding ... they create fewer money-like claims

than shadow banks”. In practice the distinction is not sharp, as the volume of repo funding

issued by commercial banks is quite significant, and in fact rising rapidly in recent years. The

degree of balance sheet encumbrance is thus rapidly becoming a key stability question for

banking supervisors.

2 The Model

The economy lasts for three periods t = 0, 1, 2. It is populated by a bank and a continuum of

lenders indexed by i. The intermediary has access to a project that needs one unit of funding

in t = 0. It raises funds from lenders, each of whom is endowed with one unit. Lenders belong

to one of two subsets. Some investors are risk neutral and demand a minimum expected return

of � > 1, reflecting their alternative option. A set of investors is infinitely risk averse, willing

to lend if and only if they can be assured to be paid in full in all states. In exchange for this

absolute safety, they accept a lower return equal to 1, the rate that they could earn on safe

storage. The measure of each subset is su�ciently large such that the bank could in principle

finance the project with only one type of lender.

• Project

For each unit invested, the project generates a return of y
t

(!) in t = 1, 2, where ! 2 {H,L}

is the aggregate state. With probability � the state is high (! = H), and the project matures

in t = 1: y
1

(H) = r > � and y
2

(H) = 0. With probability 1��, the state is low (! = L), and

the project matures only in t = 2. In this case, early liquidation at t = 1 could be costly as

the project has not fully developed its potential. The liquidation value has a safe component k

plus an uncertain value ✓, drawn from a uniform distribution on
⇥

0, ✓
⇤

. Agents receive private

signals on ✓ at the begin of time 1. Liquidating the unsafe component of the bank’s assets

requires a fixed cost c. A claim to the safe portion of this return may be securitized in order
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to be pledged to lenders seeking higher safety. If sold at time 1, financial collateral returns an

ex ante known price p  1, where the discount reflects limited interim liquidity. We initially

treat p as a parameter, later we endogenize it as the outcome of aggregate sales.

If the project is allowed to mature in the low state, it generates a return of y
2

(L) = r if

✓ � c > 0, and a return of y
2

(L) = ⇢ < 1 if ✓ < c. One interpretation for the fundamental

risk is that, when the liquidation value of unsafe assets ✓ is smaller than the liquidation cost c,

the bank becomes insolvent. We think of c as being small, such that the project is essentially

riskless if allowed to mature. To ensure that depositors may be fully repaid in the low state

when assets have a su�cently high liquidation value, we assume that ✓ + pk > 1 + c. This

assumption and the dependence of y
2

(L) on ✓ create upper and lower dominance regions in

our global game setup, respectively, which are needed to ensure equilibrium uniqueness. We

also assume that r is su�ciently large that the project has positive NPV if discounted at the

rate of return demanded by unsecured debt, even if the bank goes bankrupt in the low state

• Lenders and Financing

The bank raises funds by issuing a measure s of secure debt, and funding the residual 1� s

through unsecured debt with face value d. We will refer to them by the subscripts {U, S}.

The project has a positive NPV for any funding choice. Because of rollover risk, however, the

bank needs to provide superior safety to attract risk intolerant investors. Specifically, the bank

securitizes the safe part of its return and pledges some of it as financial collateral to secured

lenders, while retaining some.

We assume (realistically) that a fraction of financial collateral k�k must be retained by the

bank, so the maximum amount that can be pledged to back secured debt is k. An interpretation

is a minimum reserve requirement, to ensure some liquidity to meet routine withdrawals.

Because financial collateral may be sold at a discount at time 1 (at a price p  1), secured

lenders demand a su�cient haircut h — excess collateral per unit of funding — at t = 0 to

be sure of full repayment at t = 1. Provided the haircut satisfies hp � 1, secured lenders are

always paid in full even in default, and never face losses.
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As a result, unsecured debt in default has access to k�hs units of financial collateral. Since

a higher s reduces the amount of safe return available to repay unsecured debt withdrawals, it

increases the probability that the bank survives in the event of a large run. For a given proba-

bility of runs, unsecured creditors may therefore require a higher face value to compensate for

larger losses in a run.

• Lenders’ Information Structure

All agents observe the state ! at the begin of t = 1. In the high state the project has

matured so all claims are safe. In the event of a low state ! = L, agents receive individual

noisy signals on the early liquidation value of assets ✓ + k. 11 This signal is given by

x
i

= ✓ + �⌘
i

, (1)

where � > 0 and ⌘
i

are i.i.d. across players and uniformly distributed over [�✏, ✏].

• Debt Rollover, Bank Runs, and Orderly Liquidation

Since all claims are safe in the high state, we henceforth focus on the low state ! = L. By

design, secured agents are fully protected even in default, and have no incentive to run. In

contrast, unsecured lenders may choose to withdraw the principal amount 1, upon receiving

their private signals. In this case, the bank sells assets in order to meet withdrawals, starting

from its reserves. If withdrawals exceed the value of reserves, the bank needs to liquidate a part

of the project to satisfy the remaining withdrawing depositors. The liquidation process has a

large fixed cost of c. If the amount not rolled over is greater than the maximum liquidation

proceeds, the bank is immediately declared bankrupt. Here we deviate from the standard

assumption that only the money paid out is recovered, using a realistic description of bank

bankruptcy. Once a bank is declared in default, bankruptcy law forces a stay for all unsecured

creditors, enabling orderly resolution at t = 2. At that point, any unpaid depositors are

11To be precise, ✓ is the liquidation value of the asset in excess of the safe component.
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Figure 1: Economy Timeline

treated equally. The bankruptcy process produces a final excess value equal to ` under orderly

liquidation. Formally, let � be the fraction of unsecured lenders that roll over in t = 1. The

first depositors in the running queue are immediately paid out of liquid reserves (the retained

collateral k � sh). If there are depositors left in the queue, the bank is declared bankrupt if

and only if

u (1� �) > ✓ � c+ p (k � sh) .

Here the left hand term indicates the face value demanded by running depositors, and

the right hand side the amount available at t = 1, namely the net liquidation value of the

unencumbered asset value plus the value of the retained collateral. The condition may be

rewritten as stating that the bank is declared bankrupt if the net value of selling its non

reserve assets exceeds the claims of the still unpaid withdrawing depositors. We assume that

the excess value produced under orderly liquidation is never enough to fully repay all unsecured

lenders: ` < 1� pk.

• Lenders’ Payo↵s
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When the state is high, unsecured lenders always receive their face value d. In the low

state, their payo↵s depend on whether they choose to roll over or withdraw, and whether the

bank survives in case of a run. Early withdrawals receive the principal 1 if the bank has enough

liquidity. If it defaults, asset liquidation proceeds net of secured debt are distributed equally

among all unpaid unsecured debt holders.

In a run, the random order of arrival implies that running depositors receive their full

principal out of the liquid reserves with probability 1��

⇤

1��

, where �⇤ is such that (1� �⇤) u =

p (k � sh). That is, �⇤ is the minimum fraction of unsecured lenders that needs to roll over in

order for all withdrawers to receive full repayment out of reserves. With probability 1� 1��

⇤

1��

,

withdrawers receive `

�

⇤
u

, the orderly liquidation value of unencumbered assets scaled by the

mass of remaining unsecured lenders.

In conclusion, the payo↵ of unsecured lenders who do not roll over in t = 1 is

⇡N

U

(�, ✓) =

8

>

>

<

>

>

:

1, u (1� �)  1{✓�c} (✓ � c) + p (k � sh)

1��

⇤

1��

+
⇣

1� 1��

⇤

1��

⌘

`

�

⇤
u

, u (1� �) > 1{✓�c} (✓ � c) + p (k � sh)

,

where 1{·} is the indicator function.

Unsecured lenders that roll over receive the face value of their loans if the bank does not go

bankrupt. In bankruptcy, they are entitled to receive `

�

⇤
u

out of the orderly liquidation value.

That is,

⇡R

U

(�, ✓) =

8

>

>

<

>

>

:

1{✓�c}d+
�

1� 1{✓�c}
�

⇢, u (1� �)  1{✓�c} (✓ � c) + p (k � sh)

`

�

⇤
u

, u (1� �) > 1{✓�c} (✓ � c) + p (k � sh)

.

Notice that this payo↵ is decreasing in both s and h. Finally, we assume r�1  1� `�pk,

which ensures the existence of a unique ✓⇤ such that
R

1

0

�

⇡R

U

(�, ✓⇤)� ⇡N

U

(�, ✓⇤)
�

d� = 0. This

is an additional global game assumption needed to reach equilibrium uniqueness. It has a
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natural interpretation in our context as it means that higher project return (higher r) must

be associated with higher risk (lower `+ pk).

3 Equilibrium Runs

In order to derive the optimal rollover decision, we first calculate the haircut h demanded by

secured lenders. The haircut are set at t = 0 to make sure they are paid in full in the event of

a run at t = 1. Recall that the sale price of financial collateral p is known as of time 0. Later

we endogenies its value.

The payo↵ of each secured lenders in t = 1 in case of a run is ⇡
S

= ph. Therefore, the

minimum haircut h⇤ demanded by unsecured lenders in t = 0 solves

ph⇤ = 1. (2)

If the bank pledges sh⇤ units of financial collateral, secured lenders are completely safe as

long as sh⇤ = sp�1  k. In turn, this is true only if s  pk.

We now turn to unsecured lenders’ rollover decision. From the previous section, we know

that the bank is assessed to be bankrupt if and only if withdrawals 1�� are su�ciently large:

(1� �) u > 1{✓�c} (✓ � c) + p (k � sh⇤) = 1{✓�c} (✓ � c) + pk � s, (3)

Let ⇧R

U

(�, ✓) be the net payo↵ of unsecured lenders who roll over relative to that of running.

We have

⇧R

U

(�, ✓) =

8

>

>

<

>

>

:

1{✓�c}d+
�

1� 1{✓�c}
�

⇢� 1, u (1� �)  1{✓�c} (✓ � c) + p (k � sh)

� pk�s

(1��)(1�s)

⇣

1� `

1�pk

⌘

, u (1� �) > 1{✓�c} (✓ � c) + p (k � sh)

. (4)

Since unsecured lenders require a minimum expected return of � > 1, the face value of

unsecured debt d must be larger than 1. As a result, unsecured lenders face a complex coor-

12



dination problem in their decision to roll over, which depends on their beliefs about both ✓

(fundamental uncertainty) and the fraction � of lenders that rolls over (strategic uncertainty).

Suppose lenders follow a monotone strategy with a cuto↵ , rolling over if their signal is

above  and withdraw otherwise. Lender i’s expectation about the fraction of lenders that roll

over conditional on ✓ is simply the probability that any lender observes a signal above , that

is, 1 � �✓

�

. This proportion is less than z if ✓   � � (1� z). Each lender i calculates this

probability using the estimated distribution of ✓ conditional on his signal x
i

.

We rely now on the well known result in the literature of global games that as � ! 0, this

probability equals z for x
i

= .12 That is, the threshold type believes that the proportion of

lenders that roll over follows the uniform distribution on the unit interval. Focusing on the

situation when signals become nearly precise enables to highlight strategic uncertainty rather

than uncertainty about ✓. The equilibrium cuto↵ can then be computed by the threshold type

who must be indi↵erent between rolling over and withdrawing given his beliefs about �.

Let ✓⇤ be such cuto↵ . Since ⇧R

U

(�, ✓) is negative for ✓ < c, ✓⇤ must be Then ✓⇤ is the

unique solution to

Z

1� ✓

⇤�c+pk�s

1�s

0



� pk � s

(1� �) (1� s)

✓

1� `

1� pk

◆�

d�+

Z

1

1� ✓

⇤�c+pk�s

1�s

(d� 1) d� = 0. (5)

This leads us to Proposition 1.

Proposition 1 In the limit � ! 0, the unique equilibrium in t = 1 has unsecured lenders

following monotone strategies with threshold ✓⇤ given by

✓⇤ = (1� s) e
�W

 
d�1

pk�s

(1�s)

(1� `

1�pk

)

!

+ c� (pk � s) , (6)

where all unsecured lenders roll over if ✓ > ✓⇤ and do not roll over if ✓ < ✓⇤.13

Proposition 1 allows us to derive the relation between the probability of bankruptcy and

12See Morris and Shin (2003) for a comprehensive discussion of the global games literature.
13
W (·) is known as the Lambert W function and is the inverse function of y = xe

x for x � �1.
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the bank’s financing policy.

Corollary 1 The threshold ✓⇤ has the following properties:

(i) @✓

⇤

@d

< 0, @

2

✓

⇤

@d

2

> 0, and @

2

✓

⇤

@s

2

< 0.

(ii) There exists a cuto↵ d (s) � 1 such that @

2

✓

⇤

@s@d

 0 for d  d (s) and @

2

✓

⇤

@s@d

> 0 for d >

d (s), where d (s) = 1 if and only if pk � 1+s

2

.

(iii) For s 2 [0, pk), ✓⇤ is strictly decreasing in s for d  d (0), and is first strictly increasing,

then strictly decreasing in s for d > d (0), where d (0) = 1 if and only if pk � 1

2

.

(iv) There exists a cuto↵ s (d) 2
h

`�(1�pk)

2

`

, pk
⌘

such that ✓⇤ is strictly decreasing in pk for

s  s (d) and is strictly increasing in pk for s > s (d).

Note that W denotes the Lambert W function, defined in the Appendix.

The results of Corollary 1 can be more easily interpreted after rewriting (6):

✓⇤ � c+ (pk � s)

(1� s)
| {z }

unsecured debt recovery ratio

= e

�W

rolling over net-benefit-to-cost ratio

z }| {

0

@

d� 1
pk�s

(1�s)

⇣

1� `

1�pk

⌘

1

A

. (7)

Recall that a lower threshold is desirable, as it implies less frequent runs. From (7), the

signal ✓⇤ makes the threshold unsecured lender type just indi↵erent, balancing the recovery

ratio in a run against the rollover premium d� 1. The first term (the unsecured debt recovery

ratio) captures a “probability” e↵ect. That is, it measures the likelihood that the bank has

enough resources to repay unsecured lenders in a run, which depends on the realized ✓ and

the stock of unpledged collateral. The second term contains the rollover net-benefit-to cost

ratio, which measures a “relative payo↵” e↵ect, the net benefits of rolling over when there is

no bankruptcy relative to the losses incurred in a run.
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Figure 2: Bankruptcy and Financing Policy

The corollary o↵ers some insight on the comparative statics of the equilibrium run threshold

✓⇤ and thus the frequency of runs.

The e↵ect of the face value of unsecured debt d on ✓⇤ is intuitive. Increasing it improves the

payo↵ of rolling over for a given chance of default, and unambiguously reduces the probability

of runs. 14 However, promising a large reward to unsecured lenders comes at the cost of the

return to the bank in all solvent states. This observation is important to understand the bank’s

pricing choice.

A similar e↵ect arises for a higher value of orderly liquidation `, which a↵ects only the

relative payo↵ term. A higher recovery rate in default reduces the relative payo↵ to run.

• The e↵ect of repo credit on stability

14It also leads to lower concavity of the threshold in s for d large enough, and thus a flattening of the curve.
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The e↵ect of secured debt s on ✓⇤ is concave, but the sign of its derivative is ambiguous.

More secured debt reduces the amount of collateral retained and available to withdrawers,

decreasing the opportunity cost of rolling over. However, it also reduces the recovery ratio of

unsecured debt, making the bank more likely to go bankrupt for any given fraction of funds

withdrawn. The slope of the threshold curve in s at s = 0 depends on the rollover premium

d. Since d needs to be above 1, the Corollary indicates that whenever asset liquidation risk

is low (k is large, so that pk � 1+s

2

), a small increase in secured debt above s = 0 always

leads to a higher risk of runs. In this case the threshold ✓⇤ will be at first rising and then

falling in the amount of secured debt. Figure 2 shows such a case when the probability of

runs is first increasing in s, reflecting the dominance of the probability e↵ect for lower levels

of secured debt, then decreasing when the payo↵ e↵ect becomes more prominent.15 As d is

set high (closer to the participation constraint of the bank), ✓⇤ (s, d) shifts lower. Its intercept

value is lower (and thus lower is the run risk) at s = 0 than at the maximum amount possible

s = pk. The threshold ✓⇤ (s, d) may also be downward sloping from s = 0 when the rollover

reward o↵ered to unsecured debt d is very low and the asset liquidation value is risky (that is,

k is su�ciently low).

4 Funding

This section examines the bank’s initial funding choice (s, d). Because the project has positive

NPV for any funding choice, we can focus on the stability tradeo↵, excluding other e↵ects of

its financing structure.

The ex ante expected payo↵ of unsecured lenders as a function of its face value d is

V
U

(s, d) = �d+ (1� �)

✓

✓ � ✓⇤ (s, d)

✓

◆

d+
✓⇤ (s, d)

✓

pk � s+ `

1� s

�

(8)

15Both ✓

⇤�c+(pk�s)
(1�s) (the probability e↵ect) and e

�W (s) (the payo↵ e↵ect) are decreasing and concave in s.

However, as s goes to pk, the derivative of ✓

⇤�c+(pk�s)
(1�s) converges to a finite number while that of e�W (s) goes

to minus infinity. Therefore, for s large, the payo↵ e↵ect dominates the probability e↵ect.
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The bank’s expected payo↵ can be written as the return of the project of a solvent bank r

net of financing costs and the expected deadweight loss DW (s, d):

V
B

(s, d) = � [r � d (1� s)� s] + (1� �)

✓

✓ � ✓⇤ (s, d)

✓

◆

[r � d (1� s)� s] (9)

= r � s� (1� s)V
U

(s, d)�DW (s, d) ,

where DW (s, d) is the total payo↵ lost in the event of bankruptcy, that is

DW (s, d) = (1� �)
✓⇤ (s, d)

✓
(r � pk � `) . (10)

4.1 Socially Optimal Funding

As a benchmark, we characterize the optimal financing contract chosen by a social planner.

The social planner chooses a pair (s, d) that maximizes the aggregate payo↵ subject to the

participation constraint of the bank and unsecured lenders:

max
s, d

r �DW (s, d) (11)

subject to

V
B

(s, d) � 0, V
U

(s, d) � �, s 2 [0, pk] .

In other words, the optimal financing policy minimizes the deadweight loss subject to

agents’ participation constraints. Since �DW (s, d) is increasing in d, the social planner would

like to increase d as much as possible for any fraction of secured debt s.

Increasing d relaxes the lenders’ participation constraint. However, the bank’s participation

constraint is binding at d = r�s

1�s

. In addition, the bank’s payo↵ is concave and decreasing at

d = r�s

1�s

, which implies that this is the maximum face value that can be chosen by the social

planner.

To pin down the solution to the planner’s problem, we make use of our assumption that r
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Figure 3: Socially Optimal Funding

(a) No Secured Debt (b) Maximum Secured Debt

is su�ciently large. Since the bank’s participation constraint binds, it follows that the lenders’

participation constraint does not bind. Moreover, since d = r�s

1�s

> r and ✓⇤ is increasing in s

for d su�ciently large, the deadweight loss is increasing in the fraction of secured debt. This

is illustrated in Figure 3. Therefore, the social planner’s optimal choice is to set s = 0, which

results in a face value of d = r. Proposition 2 characterizes the socially optimal financing

policy.

Proposition 2 The socially optimal financing contract (so, do) requires the bank to issue either

only unsecured debt (so, do) = (0, r), or the maximum possible amount of secured debt (so, do) =
⇣

pk, r�pk

1�pk

⌘

. There exists a cuto↵ k 2 (0, k) such that (so, do) = (0, r) is socially optimal if and

only if k  k.

It is worth noting that the result of Proposition 3 does not imply that secured debt could

not add value if k  k. If the project had positive NPV if and only if some secured debt is

used (r � � < 0), then it could be financed only if some secured debt is used. Specifically, if

�r + (1� �) (pk + `)� (1� pk) � � pk > 0,

then the project can be financed provided that the bank issues enough secured debt.
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Finally, we show that a higher collateral price p (similarly for k) reduces the probability of

runs in the socially optimal funding arrangement.

Corollary 2 Under the socially optimal funding structure (so, do) = (0, r), the probability of

bankruptcy is decreasing in pk.

4.2 Private Funding Choice

The bank’s problem is to choose a funding structure (s, d) that maximize its payo↵ subject to

the participation constraint:

max
s, d

V
B

(s, d) (12)

subject to

V
U

(s, d) � �, s 2 [0, pk] .

In choosing its optimal funding structure, the bank faces a tradeo↵ between the cost of

financing and the expected deadweight loss. The cost of financing is decreasing in the face

value of unsecured debt d. As the unsecured lenders’ required payo↵ is greater than for

secured lenders, increasing the proportion of secured debt reduces the average cost of financing.

However, lower d makes runs more likely, which increases the expected deadweight loss.

Proposition 3 The probability of bankruptcy under the socially optimal funding structure is

always lower than under the bank’s financing policy: ✓⇤ (so, do) < ✓⇤ (s⇤, d⇤).

The result in Proposition 3 follows from the following. Suppose that ✓o (so, do) � ✓⇤ (s⇤, d⇤).

Since we assume that r is su�ciently large, the bank’s payo↵ under (12) is greater than zero

(the bank can garantee a positive payo↵ by choosing s = 0). But then a contrat (s⇤, d)

with d marginally greater than d⇤ satifies both participation constraints in (11) and results in

✓o (so, do) � ✓⇤ (s⇤, d⇤) > ✓⇤ (s⇤, d). But this contradicts (so, do) being a solution to (11).
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In graphic terms, because the private choice of d is lower than for the social planner, it

produces an upward shift of the ✓⇤ (s⇤, d) curve with a higher intercept at s = 0. The curve

also exhibit increasing concavity. In conclusions, the private choice of s⇤ is either equal or

higher than the social optimum value. Even when it is equal, it is combined with a lower value

for d, as shareholders prefer to earn more in solvent states than reducing further the chance of

runs. This leads to a higher threshold ✓⇤ (s⇤, d), and thus more frequent runs than the social

optimum.

Proposition 4 characterizes the optimal private funding choice.

Proposition 4 The bank’s financing policy is characterized as follows:

(i) There exists a cuto↵ �
1

2 [0, 1) such that, if � � �
1

, the bank’s financing policy (s⇤, d⇤)

has the bank borrowing either by issuing only unsecured debt (s⇤ = 0) or by issuing

the maximum possible amount of secured debt (s⇤ = pk). The optimal face value of

unsecured debt d⇤ is characterized by either µ⇤ [V
U

(s⇤, d⇤)� �] = 0 or �@DW (s

⇤
,d

⇤
)

@d

=

@V

U

(s

⇤
,d

⇤
)

@d

[1� s⇤ � µ⇤] , where µ⇤ is the Lagrange multiplier associated with unsecured

lenders’ participation constraint.

(ii) There exists a cuto↵ �
2

2 (0, 1) such that, if � > �
2

, unsecured lenders’ participation

constraint binds, i.e., V
U

(s⇤, d⇤)� � = 0.

(iii) There exists a cuto↵ �
3

2 [0, 1) such that, if � > max {�
1

,�
2

,�
3

}, the bank borrows

by issuing the maximum possible amount of secured debt (s⇤ = pk). The optimal face

value of unsecured debt d⇤ is characterized by unsecured lenders’ breakeven condition

V
U

(s⇤, d⇤)� � = 0.

The optimal funding structure is a corner solution because the bank’s payo↵ is quasiconvex

in s when � is su�ciently high. The face value of unsecured debt balances the lower cost of

funding against the higher expected deadweight loss from reducing d subject to the partici-

pation constraint. The condition for d⇤ is su�cient as we show that V
B

(s, d) is concave in

d.
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Figure 4: Private Funding Choice

The next result completes our comparative statics, showing that at the chosen funding

structure the probability of runs is lower whenever the price of pledgeable assets p is higher.

Corollary 3 If � > max {�
1

,�
2

,�
3

}, then the probability of runs under the bank’s financing

policy is decreasing in the price of the collateral p for ` � (1�pk)

2

1�pk

.

Thus when the liquidity of repo collateral in a fire sale is lower, the chance of runs in

equilibrium increases.

5 Deposit Insurance

In this section, we extend our model to include the possibility that a third party, such as a

regulator, provides deposit insurance (DI) to unsecuder lenders. Consistent with real practice,

we model DI a minimum payment of ⇡ 2 [0, 1] for unsecured lenders in all states.
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In the presence of DI, the payo↵ of unsecured lenders who do not roll over in t = 1 is

⇡N

U

(�, ✓) =

8

>

>

<

>

>

:

1, u (1� �)  1{✓�c} (✓ � c) + p (k � sh)

1��

⇤

1��

+
⇣

1� 1��

⇤

1��

⌘

max
n

`

�

⇤
u

, ⇡
o

, u (1� �) > 1{✓�c} (✓ � c) + p (k � sh)

,

while that of those who roll over is

⇡R

U

(�, ✓) =

8

>

>

<

>

>

:

1{✓�c}d+
�

1� 1{✓�c}
�

max {⇢, ⇡} , u (1� �)  1{✓�c} (✓ � c) + p (k � sh)

max
n

`

�

⇤
u

, ⇡
o

, u (1� �) > 1{✓�c} (✓ � c) + p (k � sh)

.

(13)

Therefore, unsecured lender’s net payo↵ of rolling over relative to that of running is

⇧R

U

(�, ✓) =

8

>

>

<

>

>

:

1{✓�c}d+
�

1� 1{✓�c}
�

max {⇢, ⇡}� 1, u (1� �)  1{✓�c} (✓ � c) + p (k � sh)

� pk�s

(1��)(1�s)

⇣

1�max
n

`

�

⇤
u

, ⇡
o⌘

, u (1� �) > 1{✓�c} (✓ � c) + p (k � sh)

.

(14)

Similar to Diamond and Dybvig (1984), if the regulator provides full insurance, ⇡ = 1, then

it is a dominant strategy to roll over regardless of the uncertain liquidation value of the assets

✓ and the fraction of unsecured lenders that roll over �. That is, full insurance fully deters

runs and achieves e�ciency. If the amount of DI is such that ⇡  min
n

`

1�pk

, ⇢
o

, the payo↵s

are the same as those without the presence of DI and all the previous results go through.

We are thus left with the following two cases: min
n

`

1�pk

, ⇢
o

< ⇡  max
n

`

1�pk

, ⇢
o

and

max
n

`

1�pk

, ⇢
o

< ⇡ < 1. As before, the equilibrium cuto↵ ✓⇤
DI

can then be computed by the

threshold type who must be indi↵erent between rolling over and withdrawing given his beliefs

about �:

Z

1� ✓

⇤
DI

�c+pk�s

1�s

0



� pk � s

(1� �) (1� s)

✓

1�max

⇢

`

1� pk
, ⇡

�◆�

d�+

Z

1

1�
✓

⇤
DI

�c+pk�s

1�s

(d� 1) d� = 0.

(15)

This leads us to Proposition 5:
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Proposition 5 Suppose min
n

`

1�pk

, ⇢
o

< ⇡ < 1. In the limit � ! 0, the unique equilibrium

in t = 1 has unsecured lenders following monotone strategies with threshold ✓⇤ given by

✓⇤
DI

= (1� s) e
�W

 
d�1

pk�s

1�s

(1�max{ `

1�pk

,⇡})

!

+ c� (pk � s) , (16)

where all unsecured lenders roll over if ✓ > ✓⇤ and do not roll over if ✓ < ✓⇤.

The results in Corollary 4 below follow from Proposition 5.

Corollary 4 If ⇡ = 1, then there is no run in the presence of DI. If ⇡  min
n

`

1�pk

, ⇢
o

, the

probability of bankruptcy with DI and without DI are the same: ✓⇤
DI

= ✓⇤. If min
n

`

1�pk

, ⇢
o

<

⇡ < 1, the probability of bankruptcy with DI is at least as low as that without DI: ✓⇤
DI

= ✓⇤ for

⇡  `

1�pk

and ✓⇤
DI

< ✓⇤ for ⇡ > `

1�pk

, in which case ✓⇤
DI

is strictly decreasing in ⇡.

The results above show that for any given private funding choice, an increase in the level

of DI from ⇡ to ⇡0 > ⇡ reduces the probability of bankruptcy (provided that ⇡ is su�ciently

large). The natural question that arises is whether the same result holds taking into the

dependence of the bank’s funding choice on the level of DI.

If the high state is su�ciently likely (� large enough), then Proposition 4 tells us that the

bank issues the maximum possible amount of secured debt, s⇤ = pk, and the face value of

unsecured debt is determined by unsecured lenders’ participation constraint V
U

(pk, d⇤; ⇡) = �.

An increase in ⇡, directly reduces the probability of bankruptcy as ✓⇤ (pk, d⇤; ⇡0) < ✓⇤ (pk, d⇤; ⇡),

which increases unsecured lenders’ expected payo↵ V
U

(pk, d⇤; ⇡0) > V
U

(pk, d⇤; ⇡) = �. Thus,

the bank’s is able to reduce the face value of debt to d⇤0 < d⇤ such that V
U

(pk, d⇤0; ⇡0) =

V
U

(pk, d⇤; ⇡) = �, which indirectly increases the probability of bankruptcy: ✓⇤ (pk, d⇤0; ⇡) >

✓⇤ (pk, d⇤; ⇡). Corollary 5 below shows that the direct e↵ect dominates when � is su�ciently

large.

Corollary 5 Suppose `

1�pk

< ⇡ < 1 and � is su�ciently large. Then under the private funding
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choice with DI, both the face value of unsecured debt d⇤ and the probability of bankruptcy

✓⇤ (pk, d⇤) are strictly decreasing in ⇡.

The intuition behind the result in Corollary 4 is simple. If the high state is su�ciently

likely, then unsecured lenders’ ex ante payo↵ is highly sensitive to the face value of usecured

debt. Therefore, small drops in the face value d rapidly o↵set the gains brought about by

decreases in probability of bankruptcy. As a result, the bank is unable to significantly reduce

the face value of unsecured debt following an increase in the level of DI.

6 Conclusion

We contrast the e↵ect of demand for absolute safety that drives repo funding on credit and

bank stability. Our focus is on the interaction of repo and unsecured lender behavior, in a

context where repo is designed to have no risk in all states of nature.

We show that the lower cost of repo funding may enable marginal projects to get funded.

However, secured financial credit has both a direct and an indirect risk shifting e↵ect on other

claimants, causing more frequent runs of other lenders even in states with no fundamental risk.

The direct e↵ect is due to increased risk concentration on each unit of unsecured debt, which

exacerbates the incentive to run. The indirect e↵ect arise from the risk of collateral illiquidity

(Martin, Skeie and von Thadden (2013)), which forces more asset pledges to repo lenders and

reinforces the first e↵ect. Intermediaries will recognize the increased risk of repo borrowing,

but will still seek to attract some as it is inexpensive. More frequent runs a↵ect the liquidity

of financial collateral. By forcing higher haircuts, this in turn reinforces the chance of a run.

In equilibrium, the reliance on secured funding is excessive relative to the social optimum

from a stability perspective. Its cost may lower discount rates for marginal projects, and thus

expand credit, just as lower interest rates do. This may have a procyclical e↵ect on credit

volume as well as on risk incentives.

In related work we seek to refine our result on inessential runs, adopting the definition
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of bank default developed in this paper. This seems to o↵er a simpler solution for bank run

equilibria, as the payo↵ to a run is no longer a function of the signal. A natural question to

study in that context is the e↵ect of liquid reserves, an important regulatory question under

the new Basel III framework for bank regulation. Finally, we plan to work on the e↵ect of

longer maturity assets, by applying the novel approach to dynamic global games.

A broad issue in future research is the e↵ect of the volume of encumbered assets on stability.

Public information is limited because of lack of disclosure. This reinforces market segmentation

between traditional bank funding and its secured transactions, such as derivatives (Acharya and

Bisin, 2013). Such imprecise information may create Knightian uncertainty and self fulfilling

panics (Caballero Khrisnamurthy, 2008), even before private information becomes information

sensitive (Gorton and Ordoñez, 2014).
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Appendix

Proof of Proposition 1. Goldstein and Pauzner (2000) and Morris and Shin (2003) prove

this result for a general class of global games that satisfies the following conditions: (i) for each

✓ 2 R, there exists � 2 R[{�1,1} such that⇧R

U

(�, ✓) > 0 if � > � and⇧R

U

(�, ✓) < 0 if � < �;

(ii) ⇧R

U

(�, ✓) is nondecreasing in ✓; (iii) there exists a unique ✓⇤ that satisfies
R

1

0

⇧R

U

(�, ✓⇤) d� =

0; (iv) there exists ✓, ✓, and ✏ > 0 such that ⇧R

U

(�, ✓)  �✏ for all � 2 [0, 1] and ✓  ✓ and

⇧R

U

(�, ✓) > ✏ for all � 2 [0, 1] and ✓ � ✓; (v) continuity of
R

1

0

w (�)⇧R

U

(�, ✓) d� with respect

to signal x
i

and density w; and (vi) the noise terms ⌘
i

are i.i.d. across players and uniformly

distributed over some interval [�✏, ✏]. Except for (iii), ⇧R

U

(�, ✓) clearly satisfies (i), (ii), (iv)

and (v). Condition (vi) is assumed in the model setup.

We now show that (iii) is also satisfied. Let � (✓; s, d) ⌘
R

1

0

⇧R

U

(�, ✓) d�. Since � (✓; s, d) <

0 for all (s, d) and ✓ < c, then if ✓⇤ exists it must be that ✓⇤ � c. Moreover, since � (✓; s, d)

is strictly increasing in ✓ for ✓ � c, we must show that � (c; s, d)  0 for all (s, d) (otherwise

for some (s, d) we have � (✓; s, d) � � (c; s, d) > 0 for all ✓ � c and no ✓⇤ would satisfy

� (✓⇤; s, d) = 0 ). It is straightforward to show that (a) � (c; s, d) is strictly increasing in d, (b)

d is bounded by r�s

1�s

(in which case the bank’s participation constraint binds), (c) �
�

c; s, r�s

1�s

�

is decreasing in s if r�1

1�`�pk

 1

pk

, and (d) that � (c; 0, r)  0 if e
� r�1

1� `

1�pk � pk. Therefore, for
r�1

1�`�pk

 1 we have

e
� r�1

1� `

1�pk > 1� r � 1

1� `

1�pk

= (1� pk)

✓

1� r � 1

1� `� pk

◆

+ pk � pk,

which implies that for all (s, d) we have � (c; s, d)  �
�

c; s, r�s

1�s

�

 � (c; 0, r)  0. In addition,

for all (s, d) we have � (✓; s, d) > 0 for ✓ su�ciently large such that there exists ✓⇤ � c that

satisfies � (✓⇤; s, d) = 0. Finally, there is a unique such ✓⇤ as � (✓; s, d) is strictly increasing in

✓ for ✓ � c.

For the derivation of the cuto↵ ✓⇤, note that after integrating the left-hand side of (5) we

obtain
pk � s

1� s

✓

1� `

1� pk

◆

ln
✓⇤ � c+ pk � s

1� s
+

✓⇤ � c+ pk � s

1� s
(d� 1) = 0. (A.1)

After some algebra, (A.1) can be rewritten as

d� 1
pk�s

1�s

⇣

1� `

1�pk

⌘ = � ln
✓⇤ � c+ pk � s

1� s
e� ln

✓

⇤�c+pk�s

1�s . (A.2)

Let W (·) be the inverse function of y = xex for x � �1 (known as the Lambert W function),
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that is, x = W (y). Combined with (A.2) this implies

✓⇤ = (1� s) e
�W

 
d�1

pk�s

1�s

(1� `

1�pk

)

!

+ c� (pk � s) .

Proof of Corollary 1. Implicitly di↵erentiating y = W (y) eW (y) results in

W 0 (y) =
W

(W + 1) y
=

e�W (y)

1 +W (y)
> 0,

W 00 (y) = W 02
✓

�2�W

1 +W

◆

< 0.

This allows us to compute

@✓⇤

@s
= 1�

1� `

1�pk

d� 1
W

✓

1� 1

W + 1

1� pk

1� s

◆

,

@2✓⇤

@s2
= W 00 (1� pk)2

(pk � s)3
d� 1

⇣

1� `

1�pk

⌘ < 0,

@✓⇤

@d
=

� (1� s) e�WW 0

pk�s

1�s

⇣

1� `

1�pk

⌘ < 0,

@2✓⇤

@d2
=

(1� s) e�W (W 02 �W 00)
h

pk�s

1�s

⇣

1� `

1�pk

⌘i

2

> 0,

@✓⇤

@k
= �1 +

p

d� 1

W 2

W + 1



1� ` (1� s)

(1� pk)2

�

.

Since lim
s!pk

@✓

⇤
(s,d)

@s

= �1 and ✓⇤ (s, d) is strictly concave in s, it follows that ✓⇤ (s, d) is

strictly decreasing in s if @✓

⇤
(0,d)

@s

 0, and first strictly increasing, then strictly decreasing in s

if @✓

⇤
(0,d)

@s

> 0. Note that

lim
d!1

@✓⇤ (s, d)

@s
= 1�

✓

1� `

1� pk

◆✓

1� 1� pk

1� s

◆

lim
d!1

W

d� 1

= 1�
✓

1� `

1� pk

◆✓

1� 1� pk

1� s

◆

lim
d!1

W 0 1

pk�s

1�s

(1� `

1�pk

)

1

= 1�
✓

pk � s

pk � s

◆

= 0.
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Because the above limit is true for any s, we have that @✓

⇤
(0,d)

@s

goes to zero as d ! 1. We also

have that
@2✓⇤ (s, d)

@s@d
=

1� `

1�pk

(d� 1)2
W 2



1

W + 1
� 1� pk

1� s

W + 2

(W + 1)3

�

, (A.3)

whose sign is determined by the the term inside the brackets.

If pk = 1+s

2

, then @

2

✓

⇤
(s,d)

@s@d

= 0 for d = 1 and @

2

✓

⇤
(s,d)

@s@d

> 0 for d > 1. If pk > 1+s

2

, @

2

✓

⇤
(s,d)

@s@d

is

positive for all d � 1. Thus, if pk � 1+s

2

, it follows that @

2

✓

⇤
(s,d)

@s@d

> 0 for all d > d = 1. This, in

turn, implies that @✓

⇤
(0,d)

@s

> 0 whenever pk � 1

2

.

If pk < 1+s

2

, then @

2

✓

⇤
(s,d)

@s@d

= 0 when W (s, d) =
�(1+pk�2s)+

2

p
(pk)

2�pk(6�4s)+5�4s

2

. The term

inside brackets in (A.3) is strictly increasing in W (s, d), which in turn is strictly increasing in

d. Since W (s, d) grows without bounds as d increases and W (s, 1) = 0, it follows that there

exists d (s) > 1 such that W (s, d (s)) =
�(1+pk�2s)+

2

p
(pk)

2�pk(6�4s)+5�4s

2

. Therefore, @

2

✓

⇤
(s,d)

@s@d

> 0

for d > d (s) and @

2

✓

⇤
(s,d)

@s@d

 0 for d  d (s). This implies that @✓

⇤
(0,d)

@s

> 0 for d > d (0) and
@✓

⇤
(0,d)

@s

 0 for d  d (0).

Finally, we have that

@✓⇤ (s, r)

@ (pk)
= � (1� s)W 0e

�W

 
d�1

pk�s

1�s

(1� `

1�pk

)

!

(d� 1)
⇥

` (1� s)� (1� pk)2
⇤

[(pk � s) (1� pk � `)]2
� 1

= � 1

(d� 1) (1� s)

W 2

W + 1

"

` (1� s)� (1� pk)2

(1� pk)2

#

� 1,

which is negatrive if `�(1�pk)

2

`

� s. If `�(1�pk)

2

`

< s, then @✓

⇤
(s,r)

@(pk)

is positive for s close enough

to pk, and negative for s close enough to `�(1�pk)

2

`

. Therefore, there exists s⇤ 2
⇣

`�(1�pk)

2

`

, pk
⌘

such that @✓

⇤
(s,r)

@(pk)

> 0 for s > s⇤ and @✓

⇤
(s,r)

@(pk)

< 0 for s < s⇤.

Proof of Proposition 2. We first show that the bank’s participation constraint must bind

at a solution (so, do). Suppose not, that is, V
B

(so, do) > 0 . The aggregate payo↵ r�DW (s, d)

is increasing in d, while the bank’s payo↵ is either one of the following: (1) decreasing, or (2)

increasing and then decreasing. The latter follows from the fact that

✓
@V

B

(s, d)

@d
= � (1� s)

⇥

✓ � (1� �) ✓⇤
⇤

� (1� �) (r � d (1� s)� s)
@✓⇤

@d
�
�

✓ � 1
�

(1� s)

is negative for d = r�s

1�s

. If @V

B

(s,d)

@d

 0 for all d, then V
B

(s, d) is monotone decreasing. If
@V

B

(s,d)

@d

> 0 for some d0, then there exists d00 such that @V

B

(s,d)

@d

= 0. Since V
B

(s, d) is strictly

concave in d, @V

B

(s,d)

@d

> 0 for d < d00 and @V

B

(s,d)

@d

< 0 for d > d00. Moreover, the bank’s

participation constraint binds when d = r�s

1�s

. Therefore, the social planner can increase do
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until V
B

(so, do) binds: this increases the aggregate payo↵ while still satifying the constraints,

which contradicts (so, do) being a solution.

The result that the bank’s participation constraint must be binding along with our assump-

tion that r is su�ciently large assures that the unsecured lenders’ participation constraint does

not bind. The social planner’s problem is therefore

min
s, d

✓⇤ (s, d)

subject to

r � s� d (1� s) = 0, s � 0, s  pk.

The first order necessary conditions (FOC) are

@✓⇤

@s
� � (d� 1)� µ

1

+ µ
2

= 0,

@✓⇤

@d
+ � (1� s) = 0,

r � s� d (1� s) = 0,

µ
1

s = 0,

µ
2

[pk � s] = 0,

µ
1

, µ
2

� 0.

We now show that an interior optimum does not exist. Suppose not, i.e., there exists an interior

optimum (so, do). In this case, µ
1

= µ
2

= 0 and it must be that �
@✓

⇤
(

s

o

,d

o

)

@s

@✓

⇤
(s

o

,d

o

)

@d

= d�1

1�s

, which yields

W

W + 1

1� s

pk � s
= eW � 1.
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This implies that a feasible decrease in s⇤ of �s such that �d

�s

= d�1

1�s

decreases ✓⇤ (so, do):

@✓⇤ (so, do)

@s
�s+

@✓⇤ (so, do)

@s
�d

= e�W



eW � 1� 1� pk

pk � s

W

W + 1

�

�s� (1� s) e�WW 0

pk�s

1�s

⇣

1� `

1�pk

⌘

d� 1

1� s
�s

= e�W



eW � 1� 1� s

pk � s

W

W + 1
+

W

W + 1

�

�s� e�W

W

W + 1
�s

= e�W



eW � 1� 1� s

pk � s

W

W + 1

�

�s� e�W

W

W + 1
�s+

W

W + 1
�s

=
W

W + 1

�

1� e�W

�

�s < 0,

which contradicts (so, do) being a solution.

The previous result shows that ✓⇤ (0, r) < ✓⇤
�

s0, r�s

0

1�s

0

�

for any given interior candidate

s0 2 (0, pk), which implies that that an optimum has either s = 0 or s = pk. From the proof of

Proposition 1, we know that ✓⇤ (0, r) > c. Since lim
k!k

✓⇤
⇣

pk, r�pk

1�pk

⌘

= c, there exists a k 2
⇣

s

0

p

, k
⌘

such that ✓⇤ (0, r)  ✓⇤
⇣

pk, r�pk

1�pk

⌘

for k  k and ✓⇤ (0, r) > ✓⇤
⇣

pk, r�pk

1�pk

⌘

for k > k.

Proof of Corollary 2. Follows from Corollary 1 (iv).

Proof of Proposition 3. See discussion in text.

Proof of Proposition 4. We first show (i). We use the Principle of Iterated Suprema

to break the bank’s problem into two stages, that is, we solve max
d2D



max
s2S

V
B

(s, d)

�

, where

S = [0, pk] and D = {d : V
U

(s⇤ (d) , d) � �}.
The next step is to show that V

B

(s, d) is quasiconvex in s if � su�ciently high, which

implies that there is not interior solution to problem max
s2S

V
B

(s, d). This is done by showing

that @V

B

(s,d)

@s

= V
U

(s, d) � 1 � (1� s) @V

U

(s,d)

@s

� @DW (s,d)

@s

is a single crossing function, which is

equivalent to V
U

� 1 � (1� s) @V

U

@s

and �@DW

@s

satisfying signed-ratio monotonicity (Qua and

Strulovici, 2012). Two functions f (s) and g (s) satisfy signed-ratio monotonicity if whenever

f (s) > 0 and g (s) < 0, � g(s)

f(s)

is decreasing and whenever f (s) < 0 and g (s) > 0, �f(s)

g(s)

is

decreasing. We take g (s) = �@DW (s,d)

@s

and f (s) = V
U

(s, d) � 1 � (1� s) @V

U

(s,d)

@s

. Since f (s)

is always positive, we only need to consider the case in which g (s) < 0. In this case, it must
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be that �g(s)

0
f(s)�g(s)f(s)

0

f(s)

2

< 0. We have

✓
⇥

�g (s)0 f (s) + g (s) f (s)0
⇤

=

(1� �) ✓⇤00 (r � pk � `)
�

(d� 1)
⇥

✓ � (1� �) ✓⇤
⇤

+ (1� �) ✓⇤0 [d (1� s)� (pk � s+ `)]
 

� (1� �) ✓⇤0 (r � pk � `) {(1� �) ✓⇤00 [d (1� s)� (pk � s+ `)]� 2 (1� �) ✓⇤0 (d� 1)}

= (1� �) (r � pk � `) (d� 1)
⇥

✓⇤00
�

✓ � (1� �) ✓⇤
�

+ 2 (1� �) ✓⇤0✓⇤0
⇤

.

The sign of the above expression is determined by the term inside brackets, which is strictly

decreasing in �. For any given s, it is negative if � is su�ciently close to 1, so that we are left

with two possibilities: either it is nonpositive for all �, or there exists � (s) 2 (0, 1) such that it

is nonpositive if � � � (s) and positive if otherwise. If the former is true for all s, then V
B

(s, d)

is quasiconvex if � � �
1

= 0. Suppose there exists s such that the latter is true and denote X

the set of all such s. Then V
B

(s, d) is quasiconvex if � � �
1

= sup {� (s) : s 2 X}. Combining

both cases we have that there exists a cut↵ �
1

2 [0, 1) such that V
B

(s, d) is quasiconvex if

� � �
1

, which in turn implies that we must have a corner solution: s⇤ 2 {0, pk}.
We now turn to the problem max

d2D
V
B

(s⇤, d). The first order necessary conditions (FOC) are

�@DW (s⇤, d)

@d
=

@V
U

(s⇤, d)

@d
[1� s⇤ � µ] , (A.4)

µ [V
U

(s⇤, d)� �] = 0, (A.5)

V
U

(s⇤, d) � �, (A.6)

µ � 0. (A.7)

To conclude the proof of (i) we need to show that any d satisfying the FOC is a global

maximizer. This follows from

✓
@V 2

B

(s, d)

@d2
= 2 (1� s) (1� �)

@✓⇤

@d
� (1� �) (r � d (1� s)� s)

@2✓⇤

@d2
< 0,

which implies that V
B

(s⇤, d) is (strictly) concave in d.
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We now show (ii). Note that

@DW (s⇤, d)

@d
=

(1� �)

✓

@✓⇤ (s⇤, d)

@d
(r � pk � `) , (A.8)

@V
U

(s⇤, d)

@d
= 1� (1� �)

✓



✓⇤ (s⇤, d) +
@✓⇤ (s⇤, d)

@d

✓

d� pk � s⇤ + `

1� s⇤

◆�

. (A.9)

Consider µ = 0. As � gets close to 1, the left- and right-hand sides of (A.4) approach 0 ((A.8)

approximates 0) and 1 � s⇤ ((A.9) converges to 1), respectively. Since s is bounded above by

pk < 1, the right-hand side of (A.4) is bounded away from 0. Therefore, there are only two

possibilities: either the left-hand side of (A.4) (strictly decreasing in �) is smaller than the

right-hand side (strictly increasing in �) for all �, or there exists � (s⇤, d) 2 (0, 1) such that

the left-hand side of (A.4) is smaller than the right-hand side if � > � (s⇤, d) and at least as

great if otherwise. If the former is true for all d, then (A.4) can only be satified if µ > 0.

Suppose there exists d such that the latter is true and denote Y the set of all such d. If

� > �
2

= sup {� (s⇤, d) : d 2 Y }, then (A.4) can only be satified if µ > 0. Combining these

two possibilities we deduct that there exists a cuto↵ �
2

2 (0, 1) such µ > 0 if � > �
2

, which in

turn implies that V
U

(s⇤, d)� � = 0 (from (A.5)).

We finally show (iii). Suppose � > max {�
1

,�
2

}. In this case we know from (i) that there

are two possible candidates for the bank’s choice of secured debt: either s⇤ = pk or s⇤ = 0.

We also know that unsecured lenders’ participation constraint binds. Therefore, the bank’s

implied payo↵s are given by

V
B

(pk, d⇤ (pk)) = r � pk � (1� pk) � �DW (pk, d⇤ (pk)) , (A.10)

V
B

(0, d⇤ (0)) = r � � �DW (0, d⇤ (0)) . (A.11)

The di↵erence is given by

V
B

(pk, d⇤ (pk))� V
B

(0, d⇤ (0)) = pk (� � 1)� [DW (pk, d⇤ (pk))�DW (0, d⇤ (0))] , (A.12)

which is positive for � su�ciently close to 1. Thus, there are two cases to consider: either

(A.12) (strictly increasing in �) is nonnegative for all � � �
3

= 0, or there exists �
3

2 (0, 1)

such that (A.12) is nonnegative if � > �
3

, and negative if � < �
3

. Therefore, we conclude that

if � > max {�
1

,�
2

,�
3

}, then the bank’s financing policy has the bank borrowing by issuing

only secured debt (s⇤ = pk) and d⇤ is such that V
U

(s⇤, d)� � = 0.

Proof of Corollary 3. Di↵erentiating the cuto↵ ✓⇤ relative to p when s = pk and
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d = d⇤ gives

@✓⇤ (pk, d⇤)

@p
= �ke�W � (k � k)�

W 0 (1� pk) e�W

0

B

@

� (d⇤ � 1)
h

p(k�k)

1�pk

⇣

1� `

1�pk

⌘i

2

1

C

A



�pk` (1� pk) + (1� pk � `) (1� pk)

(k � k)�1 (1� kp)2 (1� pk)2

�

,

which is negative if the term inside the brackets is negative, that is, if ` � (1�pk)

2

1�pk

.

Proof of Proposition 4. Proof is analogous to that of Proposition 1.

Proof of Corollary 4. See discussion in text.

Proof of Corollary 5. For � large enough, unsecured lenders’ participation constraint

binds: V
U

(pk, d⇤; ⇡) = �. Thus, the overall change in ✓⇤ caused by an increase in ⇡ can be

found by di↵erentiating both sides with respect to ⇡, whihc yields:

@✓⇤ (d, ⇡)

@d
d0 +

@✓⇤ (d, ⇡)

@⇡
=

(1��)✓

⇤
(d,⇡)

✓

h

d0 � 1�pk

1�pk

i

� d0

(1��)

✓

h

� (d� 1)� 1�pk

1�pk

(1� ⇡)
i .

Since the denumerator on the right-hand side is negative and d0 < 0, the overall expression is

negative for � large enough.
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